Cellulolytic Enzyme Production by Three Fungi Grown in a Ground Corn Cob Medium1

1989 ◽  
Vol 52 (4) ◽  
pp. 248-251 ◽  
Author(s):  
GUO-SUI YE ◽  
M. L. FIELDS

Trichoderma reesei NRRL 11236, Trichoderma viride ATCC 32630, Trichoderma viride ATCC 32098 and Myrothecium verrucaria ATCC 9095 were evaluated for the production of toxic substances with the fertile egg tests. Strains NRRL 11236, ATCC 32630, and ATCC 9095 produced no detectable toxic substance. However, when an oil extract was made of fermented corn cobs, strain ATCC 32098 produced a significant kill of 23.1% of the embryos. Cellulases (C1,Cx) and beta glucosidase production were produced using different ammonium salts as additional nitrogen sources to what the corn cobs contained. Temperatures (23° and 30°C) had no effect on beta glucosidase except for T. viride ATCC 32630 which produced significantly smaller quantities at 30°C than at 23°C.

2021 ◽  
Vol 5 (2) ◽  
pp. 1
Author(s):  
Ety Jumiati ◽  
Ufik Eliati Tumanggor ◽  
Abdul Halim Daulay

<p align="center"><strong><em>Abstract</em></strong></p><p>Ceiling evelopment by utilizing waste corn cobs, coconut coir with gypsum flour an the adition of latex adhesive. Variations in the composition of the mixture of corn cobs, coconut coir, gypsum flour with latex adhesive include sample A (0:0:100:15), sample B (3:3:94:15), sample C (6:6:88:15), sample D (9:9:82:15), sample E (12:12:76:15), and sample F (15:15:70:15) with emphasis using a <em>hot press </em>and drying for 28 days. The test parameters include flexural strength and fracture strength. The test results show that sample B in the composition (3:3:94:15) is the optimal result. In this composition, the resulting ceiling board has the characteristics of a flexural strength of 3966,39 kgf/cm<sup>2</sup> and a fracture strength of 1088,6 kgf/cm<sup>2</sup>.</p><p><strong><em>Keyword :</em></strong><em> Lateks , Ceiling Board, Coconut Coir, Corn Cob</em></p><p><em> </em></p>


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Mehbuba Rehim ◽  
Weixin Wu ◽  
Ahmadjan Muhammadhaji

A toxin producing phytoplankton-zooplankton model with inhibitory exponential substrate and time delay has been formulated and analyzed. Since the liberation of toxic substances by phytoplankton species is not an instantaneous process but is mediated by some time lag required for maturity of the species and the zooplankton mortality due to the toxic phytoplankton bloom occurs after some time laps of the bloom of toxic phytoplankton, we induced a discrete time delay to both of the consume response function and distribution of toxic substance term. Furthermore, based on the fact that the predation rate decreases at large toxic-phytoplankton density, the system is modelled via a Tissiet type functional response. We study the dynamical behaviour and investigate the conditions to guarantee the coexistence of two species. Analytical methods and numerical simulations are used to obtain information about the qualitative behaviour of the models.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 7058-7073
Author(s):  
Aurel Lunguleasa ◽  
Cosmin Spirchez ◽  
Sorin Radulescu

Making pellets from corn cobs, the goal of this work, was motivated by the abundance of vegetable biomass. Corn is used in both animal and human food. Four pelletizing presses with flat die and different capacities were considered. The influence of the capacity of the pellet mills on the density of the obtained pellets was established by increasing the capacities of the pellet mills to increase the density of the pellets. The waste of crushed corn cobs was used for pelletizing. The energy characteristics of the pellets from corn cobs were determined, with a high calorific value of 20.0 MJ·kg-1 and a calorific density of 19.8 MJ·m-3; these values were much higher than the wood species used currently in combustion. The black and calcined ash contents of 24.7% and 2.3%, respectively, were also obtained. Based on the main properties of experimental pellets, corn cob waste can be regarded as suitable for transformation into pellets with good characteristics. The positive influence of capacity press increase on density of pellets was also highlighted.


2021 ◽  
Vol 21 (1) ◽  
pp. 460
Author(s):  
Supriatna Supriatna ◽  
Sondang Siahaan ◽  
Indah Restiaty

Healthy vegetables can only be from healthy and pollution-free farmland, including pesticide pollution. When a harmful or toxic substance has contaminated the surface of the soil, it can evaporate, be swept away by rainwater and or enter the soil. Pollution that enters the soil is then immersed as toxic chemicals in the soil. Toxic substances in the soil can have a direct impact on humans when touched or can contaminate groundwater thus lowering the function of the soil as a place of growing and developing plants. The purpose of this study is to find out the picture of soil pollution by pesticides and the presence of earthworms and mycoriza fungi in the soil. The use of pesticides that are not in accordance with the rules and formulations cause pollution to vegetables and the environment such as soil and water. By taking soil samples and checking the content of pesticides can be known whether the pesticides used have polluted the soil. The presence of worms and mycoriza will be less and less even none at all on the soil that has been polluted. The results showed that from six soil sampling locations found two locations of carbamate pesticide pollution (33.3%), no mycoriza mushrooms were found at one location (15.6%) and earthworms are found throughout the site (100%). Pollution occurs because vegetable farmers and palawija use pesticides exceeding the recommended dose and occur pengulang in the adjacent time span. Mycoriza mushrooms are found in the form of spores, fungal spores have a stronger survival ability compared to the whole stem of the mycoriza fungus. Earthworms derived from manure used as fertilizer, in addition to its ability to avoid toxic soil mucus presence in his body can protect tabnah cacaing from pesticide exposure.


1972 ◽  
Vol 52 (6) ◽  
pp. 991-996 ◽  
Author(s):  
H. S. JOHNSON ◽  
D. J. HUME

The effects of two sources of nitrogen and ground corn cobs, applied either alone or in combination, on nitrogen fixation and seed yield of Glycine max (L.) Merr. cult Altona were investigated in an area where control plants fixed only 7.5 kg N2/ha. Treatments were: N, 280 kg N/ha as NH4NO3; organic matter (O.M.), 14 T (dry wt)/ha of ground corn cobs as an organic matter source; N + O.M.; M1; 88 T/ha of liquid cattle manure; M1 + O.M.; M2, 176 T/ha of liquid cattle manure; M2 + O.M.; and C, control. Treatment effects on nitrogen fixation, measured as acetylene reduction rates, and seed yield were related to the levels of available N supplied to the plants. Nitrogen fixation was progressively increased by treatments M1, M2 + O.M., M1 + O.M., and O.M., with the latter two fixing seven times as much nitrogen as the control. Final seed yield, however, was increased by treatments supplying the highest levels of inorganic nitrogen to plants, with N and N + O.M. producing higher yields than the control plots.


1961 ◽  
Vol 39 (1) ◽  
pp. 65-79 ◽  
Author(s):  
E. W. B. Ward ◽  
A. W. Henry

The behavior of two soil saprophytes, Trichoderma viride and Trichocladium asperum, and two root-infecting fungi, Ophiobolus graminis and Fomes annosus, was compared under various conditions in laboratory culture.On an agar-solidified organic medium optimum temperatures for growth were approximately: T. viride 25–30 °C, T. asperum 20–25 °C, O. graminis 20–25 °C, F. annosus 25 °C. T. viride rapidly outgrew the other fungi in the optimum range but this relationship changed at lower temperatures, its growth rate being equalled by that of O. graminis at 10 °C. T. viride was the only fungus to grow at 35 °C. In a synthetic liquid medium adjusted to pH values from 3.0–7.0 with a citrate–phosphate buffer, growth of O. graminis and F. annosus was sharply reduced at pH values below 5.0. T. viride made good growth at pH 3.1 and reduction in growth of T. asperum occurred only below pH 4.0. Both parasites required thiamine for growth in a synthetic medium and O. graminis also required biotin; in addition they showed a preference for organic as opposed to inorganic nitrogen sources. T. viride and T. asperum grew well with KNO3 as nitrogen source and neither required vitamins. D-Glucose, D-fructose, and D-mannose were readily utilized, and D-arabinose poorly utilized, by all four fungi. Utilization of other hexoses, pentoses, disaccharides, and polysaccharides varied considerably between the fungi.The relationship of the results obtained to the observations of others on the ecology of soil fungi is discussed and the possibility that combinations of physical and nutritional factors may favor specific fungi in the soil is considered.


2021 ◽  
Vol 328 ◽  
pp. 08009
Author(s):  
Ni Ketut Sari ◽  
Adelia Hayu Regita ◽  
Dimas Wahyu Dwi Putra ◽  
Dira Ernawati ◽  
Widi Wurjani

The increase in plastic production worldwide has created quite a serious environmental problem. Edible film is an alternative packaging that can decompose naturally, one of the materials that can be used to make edible films is starch. This study aims to determine the composition of corn cob starch and plasticizers that can produce edible films with the best properties. The starch used is derived from corn cobs and the plasticizers used are glycerol and sorbitol. The edible film in this study was made by the casting method by dispersing the raw materials, heating the mixture, printing the edible film and drying the edible film. This research was conducted with variations in the corncob of 5, 6 and 7 in grams and the variation of the ratio of glycerol to sorbitol plasticizer is 2:8; 3:7; 5:5; 7:3; 8:2 (ml). The more starch content increases the thickness of the edible film and tensile strength, but the elongation and water vapor permeability decreases, the best edible film is obtained at the glycerol-sorbitol composition ratio of 5:5 with the amount of corncob starch of 7 grams.


Author(s):  
Ugwu Tochukwu Nicholas ◽  
Nwachukwu Augusta Anuli ◽  
Ogbulie Toochukwu Ekwutosi ◽  
Anyalogbu Ernest Anayochukwu

Enormous quantities of plant biomass are generated annually, as agricultural wastes. Lignocellulose is the main structural constituent of plants and represents the primary source of renewable organic matter on earth. This study was carried out to evaluate the lignocellulose composition, proximate and selected physicochemical characteristics of some selected plant-based substrates for biogas production. The substrates were: Corn cobs, Rice straw and Water hyacinth (Eichhorniacrassipes). They were collected, cut, dried for 72 hours at 320C, milled and subjected to hemicellulose, lignin and cellulose compositional analyses, using the standard Sox let extraction method. Standard methods were employed for proximate and physicochemical analyses. Results of the compositional evaluation showed that corn cob has the highest percentages of cellulose (42.0%), while extractives content was least (2.18%) in Rice straw. For the proximate analysis, the percentage carbohydrates (24.22) and ash (24.40) were highest in rice straw, while fat content  had the least values of 0.65%  recorded in corn cobs. The results of the physicochemical analysis showed that Rice straw had the highest values of TS (94.55%) and phosphorus (928.57mg/kg), Corn cob had the highest TVS (85.53%) and organic carbon (50.46%) while Water hyacinth recorded the highest Nitrogen content (2.33%). They are good substrates for energy generation, and lignocellulosic biomass holds a huge potential to meet the current energy demand of the modern world. The knowledge of the lignocellulosic composition of the biomass would help in choosing appropriate pretreatment measures to achieve better hydrolysis which would translate to higher biogas yield.


2021 ◽  
Vol 15 (2) ◽  
pp. 63
Author(s):  
Sebastianus Dani Ganesha ◽  
Salsabila Maris Syahputri ◽  
Samuel Yedija Liem ◽  
Joko Prasetyo ◽  
Harum Azizah Darojati

Post-harvest activities of agricultural products often generate wastes. One of the agricultural wastes that increase every year is corn cobs, which have a high cellulose content and can potentially be used as raw materials for making natural fibers. Therefore, this study aims to examine several potential commercial products from corn cobs. The method used is a literature study by tracing the sources of previous writings. Furthermore, how to process corn cobs waste for the manufacture of natural fibers and commercial products will be discussed. From the previously traced sources in the utilization of corn cobs waste, 4 products were obtained. The results are nano hydrogels based on gamma radiation, activated carbon with a carbonation process, bioethanol using the SSF process, and the use of corn cob cellulose as good-quality brake lining.


Sign in / Sign up

Export Citation Format

Share Document