Prevalence of Extended-Spectrum β-Lactamase–Producing Bacteria on Fresh Vegetables in Japan

2019 ◽  
Vol 82 (10) ◽  
pp. 1663-1666 ◽  
Author(s):  
MASARU USUI ◽  
KAZUYA OZEKI ◽  
TADASU KOMATSU ◽  
AKIRA FUKUDA ◽  
YUTAKA TAMURA

ABSTRACT Extended-spectrum β-lactamase (ESBL)–producing bacteria are spreading rapidly, posing a threat to human and animal health. Contamination of vegetables with antimicrobial-resistant bacteria or those harboring antimicrobial resistance genes or a combination of both presents a potential route of transmission to humans. Therefore, the aim of this study was to determine the prevalence of these bacteria in fresh vegetables in Japan. A total of 130 samples of fresh vegetables were collected from seven supermarkets in Japan. The predominant genus detected was Pseudomonas spp., including 10 ESBL-producing strains, isolated from 10 (7.7%) of the vegetable samples. Two ESBL genes were detected, blaTEM-116 (n = 7) and blaSHV-12 (n = 3), and some of these strains were resistant to multiple antibiotics. Because vegetables are often consumed raw, those contaminated with ESBL producers could represent an important route of transmission to humans in Japan. Thus, more stringent hygiene measures and monitoring are required to prevent transmission via this source.

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Bilel Hassen ◽  
Ahlem Jouini ◽  
Monia Elbour ◽  
Safa Hamrouni ◽  
Abderrazek Maaroufi

Extended-spectrum β-lactamase and their molecular mechanism in Enterobacteriaceae were analyzed in 126 fish samples of 9 various wild species, living in the lagoon of Bizerte in Tunisia. Fifty-nine (59) Gram-negative strains were isolated and identified as Escherichia coli (n=24), Klebsiella pneumonia (n=21), Citrobacter freundii (n=8), and Shigella boydii (n=6). Forty-seven ESBL producers were identified using the synergic test. β-Lactamase genes detected were blaCTX-M-1 (E. coli/15; K. pneumonia/8; C. freundii/1; Sh. boydii/1), blaCTX-M-1+ blaOXA-1 (E. coli/4; K. pneumonia/3), blaCTX-M-1+ blaTEM-1-a (K. pneumonia/2), blaCTX-M-15+ blaTEM-1-a (K. pneumonia/1; Sh. boydii/1), blaCTX-M-15+ blaOXA-1 (K. pneumonia/1), blaCTX-M-15 (E. coli/3; K. pneumonia/1; Sh. boydii/3), and blaCTX-M-9 (C. freundii/3). Most strains (84.7%) showed a multiresistant phenotype. qnrA and qnrB genes were identified in six E. coli and in ten E. coli+one K. pneumonia isolates, respectively. The resistance to tetracycline and sulfonamide was conferred by the tet and sul genes. Characterization of phylogenic groups in E. coli isolates revealed phylogroups D (n=20 strains), B2 (n=2), and A (n=2). The studied virulence factor showed prevalence of fimA genes in 9 E. coli isolates (37.5%). Similarly, no strain revealed the three other virulence factors tested (eae, aer, and cnf1). Our findings confirmed that the lagoons of Bizerte may be a reservoir of multidrug resistance/ESBL-producing Enterobacteriaceae. This could lead to indisputable impacts on human and animal health, through the food chain.


2021 ◽  
Vol 57 (4) ◽  
pp. 283
Author(s):  
Ardhiya Puspita ◽  
Radita Yuniar Arizandy ◽  
Eddy Bagus Wasito ◽  
Kuntaman Kuntaman

Highlight :Bacteriologically for colonization of  ESBL producing Enterobacteriaceae in cockroaches (Periplaneta americana) were analyzed.The prevalence of ESBL producing bacteria among cockroaches in hospitals is bigger than in households.Abstract: Cockroach (Periplaneta americana) is one of the vectors in the environment that can transmit disease. Cockroaches can act as potential mechanical vectors of antibiotic resistant bacteria. Enterobacteriaceae is a gram-negative bacteria that has natural habitats in the digestive tract of humans and animals. Enterobacteriaceae that produce Extended Spectrum β-lactamases (ESBLs) have emerged as major pathogens in hospitals. The study analyzed the prevalence of ESBL producing bacteria in cockroaches that lived in hospitals and residential homes. In this study, a total of 200 cockroaches consisting of 100 cockroaches from the hospital environment and 100 cockroaches from the residential environment were analyzed bacteriologically for colonization of  ESBL producing Enterobacteriaceae. The specimen of the alimentary tract was taken and sub-cultured in MacConkey agar supplemented with cefotaxime 2 ug/ml. Growth colonies were suggested as an ESBL-producing bacteria, then were confirmed as ESBL producers by the Double Disk Synergy Test (DDST). The ESBL gene was detected by Polymerase Chain Reaction (PCR). Among 100 household cockroach samples, 14 (14%) were identified as ESBL producers, while 100 hospital cockroaches were 26 (26%) positive ESBL. The ESBL gene, in hospital cockroach were identified of CTXM 19 (19%), SHV 7 (7%), and not any TEM gene, while among household cockroaches were identified CTXM 2 (2%), SHV 11 (11%), and also not detected TEM ESBL gene. Among ESBL genes, only the CTXM gene was significantly different between household and hospital cockroaches.


Author(s):  
Dominic Poulin-Laprade ◽  
Jean-Simon Brouard ◽  
Nathalie Gagnon ◽  
Annie Turcotte ◽  
Alexandra Langlois ◽  
...  

Pigs are major reservoirs of resistant Enterobacteriaceae that can reach humans through consumption of contaminated meat or vegetables grown in manure-fertilized soil. Samples were collected from sows during lactation and their piglets at five time points spanning the production cycle. Cefotaxime-resistant bacteria were quantified and isolated from feed, feces, manures and carcasses of pigs reared with penicillin-using or antibiotic-free husbandries. The isolates were characterized by antibiotic susceptibility testing, whole genome sequencing and conjugation assays. The extended spectrum β-lactamase (ESBL) phenotype was more frequent in isolates originating from antibiotic-free animals, while the bacteria isolated from penicillin-using animals were on average resistant to a greater number of antibiotics. The ESBL-encoding genes identified were blaCTX-M-1, blaCTX-M-15 and blaCMY-2 and they co-localised on plasmids with various genes encoding resistance to ß-lactams, co-trimoxazole, phenicols and tetracycline, all antibiotics used in pig production. Groups of genes conferring the observed resistance and the mobile elements disseminating multidrug resistance were determined. The observed resistance to ß-lactams was mainly due to the complementary actions of penicillin-binding proteins, an efflux pump and ß-lactamases. Most resistance determinants were shared by animals raised with or without antimicrobials. This suggests a key contribution of indigenous enterobacteria maternally transmitted along the sow lineage, regardless of antimicrobial use. It is unclear if the antimicrobial resistance observed in the enterobacteria populations of the commercial pig herds studied were present before the use of antibiotics, or the extent to which historical antimicrobial use exerted a selective pressure defining the resistant bacterial populations in farms using penicillin prophylaxis. Importance: Antimicrobial resistance is a global threat that needs to be fought on numerous fronts along the One Health continuum. Vast quantities of antimicrobials are used in agriculture to ensure animal welfare and productivity, and are arguably a driving force for the persistence of environmental and food-borne resistant bacteria. This study evaluated the impact of conventional, organic and other antibiotic-free husbandry practices on the frequency and nature of antimicrobial resistance genes and multidrug resistant enterobacteria. It provides knowledge about the relative contribution of specific resistance determinants to observed antibiotic resistance. It also showed the clear co-selection of genes coding for extended-spectrum beta-lactamases and genes coding for the resistance to antibiotics commonly used for prophylaxis or in curative treatments in pig operations.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1460 ◽  
Author(s):  
Seema Porob ◽  
Hillary A. Craddock ◽  
Yair Motro ◽  
Orly Sagi ◽  
Michael Gdalevich ◽  
...  

In disenfranchised communities, untreated greywater (wastewater without sewage) is often environmentally discharged, resulting in potential human exposure to antimicrobial-resistant bacteria (ARB), including extended-spectrum beta-lactamase (ESBL) producers. We sought to examine the abundance of ARB, specifically ESBLs, and antimicrobial resistance genes (ARGs) in greywater from off-grid, pastoral Bedouin villages in Southern Israel. Greywater samples (n = 21) collected from five villages were analyzed to enumerate fecal coliforms and Escherichia coli. ESBL producers were recovered on CHROMagar ESBL and confirmed by VITEK®2 (bioMerieux, Marcy l’Etoile, France) for identification and antimicrobial susceptibility testing. Total genomic DNA was extracted from greywater samples and quantitative PCR (qPCR) was used to determine relative abundance (gene copies/16S rRNA gene) of class 1 integron-integrase intI1, blaTEM, blaCTX-M-32, sul1, and qnrS. The mean count of presumptive ESBL-producing isolates was 4.5 × 106 CFU/100 mL. Of 81 presumptive isolates, 15 ESBL producers were recovered. Phenotypically, 86.7% of ESBL producers were multi-drug resistant. Results from qPCR revealed a high abundance of intI1 (1.4 × 10−1 gene copies/16S rRNA), sul1 (5.2 × 10−2 gene copies/16S rRNA), and qnrS (1.7 × 10−2 gene copies/16S rRNA) followed by blaTEM (3.5 × 10−3 gene copies/16S rRNA) and blaCTX-M-32 (2.2 × 10−5 gene copies/16S rRNA). Results from our study indicate that greywater can be a source of ARB, including ESBL producers, in settings characterized by low sanitary conditions and inadequate wastewater management.


2013 ◽  
Vol 58 (2) ◽  
pp. 1228-1230 ◽  
Author(s):  
Giuseppe Valenza ◽  
Silke Nickel ◽  
Yvonne Pfeifer ◽  
Christoph Eller ◽  
Elzbieta Krupa ◽  
...  

ABSTRACTWe determined the presence of extended-spectrum-β-lactamase (ESBL)-producingEscherichia coliamong 3,344 study participants from the German community. Intestinal colonization was detected in 211 persons (6.3%), without significant differences among the different age groups. The majority (95.2%) of isolates harbored CTX-M-type ESBL, with CTX-M-15 (46%) and CTX-M-1 (24.2%) as the most common types. The finding of ESBL producers and one isolate additionally producing carbapenemase OXA-244 indicates a risk of dissemination of resistant bacteria outside the hospitals.


Author(s):  
Bhawana Sapkota ◽  
Santosh K. Yadav ◽  
Gunaraj Dhungana ◽  
Shamshul Ansari ◽  
Shyam K. Mishra

Infections due to extended-spectrum β-lactamase- (ESBL-) producing Gram-negative bacteria have led to increased mortality, morbidity, and economic burden worldwide. These bacteria can colonize the healthy intestine of human beings and can disseminate in communities and hospital. This study aimed to investigate the prevalence of fecal carriage of ESBL-producing Escherichia coli and Klebsiella species among health science (HS) and non-health science (NHS) students. This descriptive cross-sectional study was conducted on 104 HS and 104 NHS students in which one stool sample from each student was collected and processed for bacterial culture and sensitivity testing according to standard bacteriological procedures. Each morphotype was identified and characterized phenotypically. The antimicrobial sensitivity profile of bacterial isolates was determined by the Kirby–Bauer disk diffusion technique. ESBL production was tested by combination disk method as recommended by the Clinical and Laboratory Standards Institute. Out of 208 stool samples, E. coli and Klebsiella spp. were recovered from 203 (86.8%) and 31 (13.2%) stool samples, respectively. Among those 234 isolates, 69 were positive for ESBL which included E. coli (n = 66, 95.7%) and Klebsiella spp. (n = 3, 4.3%). Fifty (42.4%) out of 118 isolates from HS students and 19 (16.4%) out of 116 from NHS students were colonized by ESBL-producers. Compared to non-ESBL producers, a higher number of ESBL-producing isolates were resistant to ciprofloxacin (14.5% vs. 1.8%, p < 0.001 ), cotrimoxazole (59.4% vs. 16.4%, p < 0.001 ), and amikacin (10.1% vs 4.2%, p < 0.001 ). All E. coli and Klebsiella species isolates were susceptible to meropenem. The prevalence of fecal carriage of ESBL-producing bacteria was higher in HS students; however, there was a considerable number of these strains colonizing NHS students as well. This “iceberg phenomenon” of asymptomatic carriage of ESBL-producing pathogens might act as a source of infection in both the community and hospitals. Therefore, surveillance of carriage of drug-resistant bacteria should be performed regularly.


2021 ◽  
Vol 319 ◽  
pp. 02014
Author(s):  
Khadija Ouarrak ◽  
Abdelkader Chahlaoui ◽  
Hajar El Omari ◽  
Imane Taha ◽  
Rachid Sammoudi ◽  
...  

The present study was conducted to better understand the specific contingency of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) isolated from urban waters of Wadi Ouislane of the city of Meknes, compared to isolates from patients hospitalized in the resuscitation department at Mohamed V Hospital in Meknes, Morocco. These antibiotic-resistant bacteria have become ubiquitous in effluents, creating increasing concern about their potential impact on human and animal health and the environment. We took four samples of wastewater representative of a day, effluents of the wadi Ouislane. They were analyzed for indicator germs of fecal pollution, namely total coliforms (TC) and fecal coliforms (FC). Bacteria were enumerated by the dilution-filtration technique and by incorporation in solid medium in supercooling. However, four bacteriological samples, taken for clinical purposes from hospitalized patients, were performed at the medical analysis laboratory of Mohamed V Hospital in Meknes. Analysis of our results showed that ESBL-producing E. coli bacteria isolated from our effluents had the same antibiotic resistance profiles as those from hospitalized patients. Urban wastewater discharges into the environment contribute to the dissemination of extended-spectrum beta-lactamase-producing Escherichia coli that may pose health risks to the population.


2021 ◽  
Author(s):  
Ingrid Cardenas-Rey ◽  
Teresita Bello Gonzalez ◽  
Jeanet Van der Goot ◽  
Daniela Ceccarelli ◽  
Gerwin Bouwhuis ◽  
...  

Abstract BackgroundBroilers are among the most common and dense poultry production systems, where antimicrobials have been used extensively to promote animal health and performance. The continuous usage of antimicrobials has selected for resistant bacteria, such as e Extended-spectrum β-lactamase-producing Escherichia coli (ESBL-Ec) . Here, we studied the ESBL-Ec prevalence and successional dynamics of the caecal microbiome of developing broilers in a commercial flock during their production life. Broilers were discriminated as ESBL-Ec colonised or not by selective culturing. Using 16S rRNA gene sequencing, we compared the richness, evenness and composition of the cecal microbiota of both broiler groups and assessed the combined role of age and ESBL status on the microbiota. ResultsWe observed a linear trend in the proportions of ESBL-Ec throughout the broilers' production round, X 2 (1, N = 12) = 28.4, p < .001. Over time, microbial richness was consistently higher in ESBL-Ec free broilers, but significant differences between both groups were found exclusively on day three (Wilcoxon rank-sum test, p = .016). Bray-Curtis distance-based RDA (BC- dbRDA) showed no explanatory power of ESBL status, while age explained 14% of the compositional variation of the caecal microbiome, F (2, 66) = 6.47, p = .001. ConclusionsThis study assessed the role of ESBL-producing E.coli in the successional dynamics of the cecal microbiome in developing broilers and shows that the presence of ESBL-producing E.coli is associated with mild but consistent reductions in alpha diversity and transient compositional differences. We also reported the clonal spread of ESBL and point to the farm environment as a likely source for ESBLs.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1007
Author(s):  
Emelia Aini Kamaruzzaman ◽  
Saleha Abdul Aziz ◽  
Asinamai Athliamai Bitrus ◽  
Zunita Zakaria ◽  
Latiffah Hassan

The emergence and spread of antimicrobial resistance genes and resistant bacteria do not recognize animal, human, or geographic boundaries. Addressing this threat requires a multidisciplinary approach involving human, animal, and environmental health (One Health) sectors. This is because antimicrobial agents used in veterinary medicine have been reported to be the same or similar to those in human medicine use. Extended-spectrum β-lactamase (ESBL) E. coli is a growing public health problem worldwide, and the agri-food industry is increasingly becoming a source of clinically important ESBL bacteria. Accordingly, the aim of this study was to investigate the occurrence and characteristics of ESBL-producing E. coli from dairy cattle, milk, and the farm environment. E. coli isolates were identified by their 16sRNA, and their ESBL production was confirmed using ESBL–CHROMagar media and the double disk diffusion method. Genotypes of ESBL producers were characterized using multiplex polymerase chain reaction (mPCR) assay. It was found that 18 (4.8%) of the total samples were positive for ESBL-producing E. coli. Of these, 66.7% were from milk, and 27.8% and 5.5% were from the farm environment and faecal samples, respectively. Predominant ESBL genotypes identified were a combination of both TEM and CTX-M in eight out of 18 (44.4%) isolates. Four (22.2%) isolates produced the CTX-M gene, two (11.1%) isolates produced the TEM gene, and four (22.2%) remaining isolates produced the ESBL genes other than TEM, SHV, CTX-M, and OXA. The SHV and OXA gene were not detected in all 18 isolates. In all, there were four profiles of genetic similarity. The occurrence of these genotypes in indicator organisms from dairy cattle, milk, and the farm environment further re-enforced the potential of food-animals as sources of ESBL-producing E. coli infection in humans via the food chain. Thus, there is the need for the adoption of a tripartite One Health approach in surveillance and monitoring to control antimicrobial resistance.


2019 ◽  
Vol 8 (1) ◽  
pp. 46-49
Author(s):  
Farahnaaz Feroz ◽  
Rashed Noor

Fresh vegetables and fruits are prime source of fiber, vitamins and minerals in our daily diet. Nevertheless, raw vegetables act as a vector for transmitting pathogenic microbes and the majority of diseases are spread by the fecal-oral route at different point of harvesting, post harvesting, during transportation and storage conditions. Contaminated water, carrier materials, and unhygienic handlers are the crucial gateway for disease causing microbes in fresh vegetables. Recently Listeria spp., E. coli, and Salmonella spp. associated outbreak evident in mixed vegetables salad and other vegetable samples also showed pathogenic proliferation to some extent. Children are the major risk group and according to World Health Organization, their mortality rate is high due to food borne infections. In Bangladesh, the situation is more alarming in terms of pathogenic proliferation in raw vegetables. A lot of researches have been conducted in recent years on fresh vegetables and a wide range of vegetables are found to harbor pathogenic microorganisms inclusive of drug resistant bacteria which may affect the measures to combat harmful pathogens. Additionally, phytotoxic, natural contaminants and pesticides are also found to reside in raw vegetables which may be life threatening for both human and animal health as these particles magnify when we repeatedly consume them. The current review focus on the possible intervention of potential contaminants in the vegetable items and possible public health risks associated with their consumption along with a general guideline to combat contamination of fresh vegetables. Stamford Journal of Microbiology, Vol.8(1) 2018: 46-49


Sign in / Sign up

Export Citation Format

Share Document