scholarly journals Bioethanol Production Through Syngas Fermentation by a Novel Immobilized Bioreactor Using Clostridium Ragsdalei

2021 ◽  
Vol 5 (3) ◽  
pp. 13-20
Author(s):  
Simge Sertkaya ◽  
Tugba Keskin Gundogdu ◽  
Christian Kennes ◽  
Nuri Azbar

Global energy demand has been escalating creating ever increasing pressure on climate crisis caused by fossil-based fuels. Humankind is now desperately in need of alternative and sustainable energy sources. Therefore, biofuels provide promising solution. Amongst the various biofuels, bioethanol from syngas, which is a mixture of, mostly, CO, CO2, N2, H2, and CH4 gases has been drawing increasing attention recently. Regarding this, the conversion of syngas to bioethanol, an alternative biofuel to fossil fuels, is considered a promising approach to reduce the negative effects of global warming by reducing greenhouse gas emissions. In this study, a novel immobilized cell bioreactor, where Clostridium ragsdalei was grown, was designed and used to achieve an efficient production of ethanol regarding volumetric production. For this purpose, a 300 mL immobilized reactor filled with ceramic balls as immobilization material was set and operated at 30oC throughout the study where CO gas as the main substrate was fed at rate of 6 ml/min continuously. Results showed ethanol and acetic acid concentrations reaching up to 1.4 g/L and 0.2 g/L, respectively, after 600h with a volumetric production rate of 0,0023g ethanol/L/h. We believe, the ceramic ball was used for bioethanol production for syngas for the first time.

Author(s):  
Füsun Çelebi Boz ◽  
Turgut Bayramoğlu

Abstract The increase in population and urbanization which emerged together with industrialization have brought the increase in energy demand with them. Carbon emissions rise as a result of the increase in energy demand and lead to climate change. Such changes in climate have negative effects on not only the environment but human life as well. Therefore, countries should implement energy policies with low carbon density in order to reduce greenhouse gas emission. In this context, preferring renewable energy sources can prevent temperature increase by reducing the effects of fossil fuels on the environment. Turkey should attach importance to renewable energy sources and invest in these sources in accordance with the commitments accepted at the Paris Climate Summit in order to reduce carbon emission.


2019 ◽  
Vol 9 (23) ◽  
pp. 5012 ◽  
Author(s):  
Benedetti ◽  
Locci ◽  
Gramegna ◽  
Sestili ◽  
Savatin

: Energy demand is constantly growing, and, nowadays, fossil fuels still play a dominant role in global energy production, despite their negative effects on air pollution and the emission of greenhouse gases, which are the main contributors to global warming. An alternative clean source of energy is represented by the lignocellulose fraction of plant cell walls, the most abundant carbon source on Earth. To obtain biofuels, lignocellulose must be efficiently converted into fermentable sugars. In this regard, the exploitation of cell wall lytic enzymes (CWLEs) produced by lignocellulolytic fungi and bacteria may be considered as an eco-friendly alternative. These organisms evolved to produce a variety of highly specific CWLEs, even if in low amounts. For an industrial use, both the identification of novel CWLEs and the optimization of sustainable CWLE-expressing biofactories are crucial. In this review, we focus on recently reported advances in the heterologous expression of CWLEs from microbial and plant expression systems as well as some of their industrial applications, including the production of biofuels from agricultural feedstock and of value-added compounds from waste materials. Moreover, since heterologous expression of CWLEs may be toxic to plant hosts, genetic strategies aimed in converting such a deleterious effect into a beneficial trait are discussed.


2021 ◽  
Vol 922 (1) ◽  
pp. 012010
Author(s):  
Wusnah ◽  
M. D. Supardan ◽  
S. Haryani ◽  
Yunardi

Abstract Fossil fuels that mainly supply the current increasing world’s energy demand originated from non-renewable resources. In addition to the depletion of their resources within the next short time, the combustion of fossil fuels to power industries and transportation also negatively impacts humans and the environment due to the release of various gaseous pollutants. To increase the share of renewables in the primary energy mix, the Government of Indonesia is currently struggling to meet a target of 23% by 2025. Therefore, more significant efforts to search for potential renewable energy sources are the only way to overcome this issue. Bioethanol is an eco-friendly renewable energy source since its combustion emits a low concentration of pollutants. Microalgae have gained significant interest in bioethanol production because of rapid biomass growth and relatively easy pre-treatment steps. It is renewable, carbon-neutral, sustainable and can be grown in wastewater coupling as wastewater treatment. This paper reviews bioethanol production, providing knowledge on the characteristics of microalgae potential for producing biomass to be converted into bioethanol, introducing process for bioethanol production, and presenting the potential challenges of bioethanol as a future renewable energy.


2020 ◽  
pp. 149-159
Author(s):  
Jatinder Kataria ◽  
Saroj Kumar Mohapatra ◽  
Amit Pal

The limited fossil reserves, spiraling price and environmental impact due to usage of fossil fuels leads the world wide researchers’ interest in using alternative renewable and environment safe fuels that can meet the energy demand. Biodiesel is an emerging renewable alternative fuel to conventional diesel which can be produced from both edible and non-edible oils, animal fats, algae etc. The society is in dire need of using renewable fuels as an immediate control measure to mitigate the pollution level. In this work an attempt is made to review the requisite and access the capability of the biodiesel in improving the environmental degradation.


2013 ◽  
pp. 109-128 ◽  
Author(s):  
C. Rühl

This paper presents the highlights of the third annual edition of the BP Energy Outlook, which sets out BP’s view of the most likely developments in global energy markets to 2030, based on up-to-date analysis and taking into account developments of the past year. The Outlook’s overall expectation for growth in global energy demand is to be 36% higher in 2030 than in 2011 and almost all the growth coming from emerging economies. It also reflects shifting expectations of the pattern of supply, with unconventional sources — shale gas and tight oil together with heavy oil and biofuels — playing an increasingly important role and, in particular, transforming the energy balance of the US. While the fuel mix is evolving, fossil fuels will continue to be dominant. Oil, gas and coal are expected to converge on market shares of around 26—28% each by 2030, and non-fossil fuels — nuclear, hydro and renewables — on a share of around 6—7% each. By 2030, increasing production and moderating demand will result in the US being 99% self-sufficient in net energy. Meanwhile, with continuing steep economic growth, major emerging economies such as China and India will become increasingly reliant on energy imports. These shifts will have major impacts on trade balances.


2002 ◽  
Vol 16 (2) ◽  
pp. 109-124 ◽  
Author(s):  
William E. Shafer ◽  
D. Jordan Lowe ◽  
Timothy J. Fogarty

The current trend toward corporate acquisitions of CPA firms poses potential threats to the autonomy and ethical standards of public accounting professionals. This recent consolidation movement suggests that for the first time a significant number of public accounting professionals are subject to the supervision and control of nonprofessionals. In addition to acknowledging the potential threats to auditor independence and objectivity, this paper suggests that these new organizational arrangements for the provision of public accounting services have other negative effects on professionalism and ethics such as desensitizing CPAs to traditional professional values, and subverting professional institutions to the goals of corporate employers. This paper develops a framework that identifies several specific research questions related to the effects of corporate ownership on professionalism and ethics in public accounting.


Author(s):  
M. von der Thannen ◽  
S. Hoerbinger ◽  
C. Muellebner ◽  
H. Biber ◽  
H. P. Rauch

AbstractRecently, applications of soil and water bioengineering constructions using living plants and supplementary materials have become increasingly popular. Besides technical effects, soil and water bioengineering has the advantage of additionally taking into consideration ecological values and the values of landscape aesthetics. When implementing soil and water bioengineering structures, suitable plants must be selected, and the structures must be given a dimension taking into account potential impact loads. A consideration of energy flows and the potential negative impact of construction in terms of energy and greenhouse gas balance has been neglected until now. The current study closes this gap of knowledge by introducing a method for detecting the possible negative effects of installing soil and water bioengineering measures. For this purpose, an environmental life cycle assessment model has been applied. The impact categories global warming potential and cumulative energy demand are used in this paper to describe the type of impacts which a bioengineering construction site causes. Additionally, the water bioengineering measure is contrasted with a conventional civil engineering structure. The results determine that the bioengineering alternative performs slightly better, in terms of energy demand and global warming potential, than the conventional measure. The most relevant factor is shown to be the impact of the running machines at the water bioengineering construction site. Finally, an integral ecological assessment model for applications of soil and water bioengineering structures should point out the potential negative effects caused during installation and, furthermore, integrate the assessment of potential positive effects due to the development of living plants in the use stage of the structures.


Author(s):  
Ahmed I. Osman ◽  
Neha Mehta ◽  
Ahmed M. Elgarahy ◽  
Amer Al-Hinai ◽  
Ala’a H. Al-Muhtaseb ◽  
...  

AbstractThe global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofuels are produced in a sustainable manner. To this end, life cycle assessment (LCA) provides information on environmental impacts associated with biofuel production chains. Here, we review advances in biomass conversion to biofuels and their environmental impact by life cycle assessment. Processes are gasification, combustion, pyrolysis, enzymatic hydrolysis routes and fermentation. Thermochemical processes are classified into low temperature, below 300 °C, and high temperature, higher than 300 °C, i.e. gasification, combustion and pyrolysis. Pyrolysis is promising because it operates at a relatively lower temperature of up to 500 °C, compared to gasification, which operates at 800–1300 °C. We focus on 1) the drawbacks and advantages of the thermochemical and biochemical conversion routes of biomass into various fuels and the possibility of integrating these routes for better process efficiency; 2) methodological approaches and key findings from 40 LCA studies on biomass to biofuel conversion pathways published from 2019 to 2021; and 3) bibliometric trends and knowledge gaps in biomass conversion into biofuels using thermochemical and biochemical routes. The integration of hydrothermal and biochemical routes is promising for the circular economy.


2021 ◽  
Vol 13 (4) ◽  
pp. 1880
Author(s):  
Todd Chou ◽  
Vasileios Kosmas ◽  
Michele Acciaro ◽  
Katharina Renken

Wind-assisted ship propulsion (WASP) technology seems to be a promising solution toward accelerating the shipping industry’s decarbonization efforts as it uses wind to replace part of the propulsive power generated from fossil fuels. This article discusses the status quo of the WASP technological growth within the maritime transport sector by means of a secondary data review analysis, presents the potential fuel-saving implications, and identifies key factors that shape the operational efficiency of the technology. The analysis reveals three key considerations. Firstly, despite the existing limited number of WASP installations, there is a promising trend of diffusion of the technology within the industry. Secondly, companies can achieve fuel savings, which vary depending on the technology installed. Thirdly, these bunker savings are influenced by environmental, on-board, and commercial factors, which presents both opportunities and challenges to decision makers.


2021 ◽  
Vol 13 (2) ◽  
pp. 788
Author(s):  
Zulqarnain ◽  
Muhammad Ayoub ◽  
Mohd Hizami Mohd Yusoff ◽  
Muhammad Hamza Nazir ◽  
Imtisal Zahid ◽  
...  

Dependence on fossil fuels for meeting the growing energy demand is damaging the world’s environment. There is a dire need to look for alternative fuels that are less potent to greenhouse gas emissions. Biofuels offer several advantages with less harmful effects on the environment. Biodiesel is synthesized from the organic wastes produced extensively like edible, non-edible, microbial, and waste oils. This study reviews the feasibility of the state-of-the-art feedstocks for sustainable biodiesel synthesis such as availability, and capacity to cover a significant proportion of fossil fuels. Biodiesel synthesized from oil crops, vegetable oils, and animal fats are the potential renewable carbon-neutral substitute to petroleum fuels. This study concludes that waste oils with higher oil content including waste cooking oil, waste palm oil, and algal oil are the most favorable feedstocks. The comparison of biodiesel production and parametric analysis is done critically, which is necessary to come up with the most appropriate feedstock for biodiesel synthesis. Since the critical comparison of feedstocks along with oil extraction and biodiesel production technologies has never been done before, this will help to direct future researchers to use more sustainable feedstocks for biodiesel synthesis. This study concluded that the use of third-generation feedstocks (wastes) is the most appropriate way for sustainable biodiesel production. The use of innovative costless oil extraction technologies including supercritical and microwave-assisted transesterification method is recommended for oil extraction.


Sign in / Sign up

Export Citation Format

Share Document