Enzymes with opposite functions form complex

2022 ◽  
pp. 5-5
Author(s):  
Celia Henry Arnaud
Keyword(s):  
2019 ◽  
Vol 20 (9) ◽  
pp. 2066 ◽  
Author(s):  
Namrata Khurana ◽  
Suresh C. Sikka

Androgen receptor (AR) signaling plays a key role not only in the initiation of prostate cancer (PCa) but also in its transition to aggressive and invasive castration-resistant prostate cancer (CRPC). However, the crosstalk of AR with other signaling pathways contributes significantly to the emergence and growth of CRPC. Wnt/β-catenin signaling facilitates ductal morphogenesis in fetal prostate and its anomalous expression has been linked with PCa. β-catenin has also been reported to form complex with AR and thus augment AR signaling in PCa. The transcription factor SOX9 has been shown to be the driving force of aggressive and invasive PCa cells and regulate AR expression in PCa cells. Furthermore, SOX9 has also been shown to propel PCa by the reactivation of Wnt/β-catenin signaling. In this review, we discuss the critical role of SOX9/AR/Wnt/β-catenin signaling axis in the development and progression of CRPC. The phytochemicals like sulforaphane and curcumin that can concurrently target SOX9, AR and Wnt/β-catenin signaling pathways in PCa may thus be beneficial in the chemoprevention of PCa.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ba Van Vu ◽  
Quyet Nguyen ◽  
Yuki Kondo-Takeoka ◽  
Toshiki Murata ◽  
Naoki Kadotani ◽  
...  

AbstractTransposable elements are common targets for transcriptional and post-transcriptional gene silencing in eukaryotic genomes. However, the molecular mechanisms responsible for sensing such repeated sequences in the genome remain largely unknown. Here, we show that machinery of homologous recombination (HR) and RNA silencing play cooperative roles in copy number-dependent de novo DNA methylation of the retrotransposon MAGGY in the fungusPyricularia oryzae. Genetic and physical interaction studies revealed thatRecAdomain-containing proteins, includingP. oryzaehomologs ofRad51, Rad55, andRad57, together with an uncharacterized protein, Ddnm1, form complex(es) and mediate either the overall level or the copy number-dependence of de novo MAGGY DNA methylation, likely in conjunction with DNA repair. Interestingly,P. oryzaemutants of specific RNA silencing components (MoDCL1andMoAGO2)were impaired in copy number-dependence of MAGGY methylation. Co-immunoprecipitation of MoAGO2 and HR components suggested a physical interaction between the HR and RNA silencing machinery in the process.


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-70
Author(s):  
Wei Ming Tan ◽  
T. Hui Teo

Prognostic techniques attempt to predict the Remaining Useful Life (RUL) of a subsystem or a component. Such techniques often use sensor data which are periodically measured and recorded into a time series data set. Such multivariate data sets form complex and non-linear inter-dependencies through recorded time steps and between sensors. Many current existing algorithms for prognostic purposes starts to explore Deep Neural Network (DNN) and its effectiveness in the field. Although Deep Learning (DL) techniques outperform the traditional prognostic algorithms, the networks are generally complex to deploy or train. This paper proposes a Multi-variable Time Series (MTS) focused approach to prognostics that implements a lightweight Convolutional Neural Network (CNN) with attention mechanism. The convolution filters work to extract the abstract temporal patterns from the multiple time series, while the attention mechanisms review the information across the time axis and select the relevant information. The results suggest that the proposed method not only produces a superior accuracy of RUL estimation but it also trains many folds faster than the reported works. The superiority of deploying the network is also demonstrated on a lightweight hardware platform by not just being much compact, but also more efficient for the resource restricted environment.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 624
Author(s):  
Cintya Dharmayanti ◽  
Todd A. Gillam ◽  
Manuela Klingler-Hoffmann ◽  
Hugo Albrecht ◽  
Anton Blencowe

Synthetic polypeptides and polymer-peptide hybrid materials have been successfully implemented in an array of biomedical applications owing to their biocompatibility, biodegradability and ability to mimic natural proteins. In addition, these materials have the capacity to form complex supramolecular structures, facilitate specific biological interactions, and incorporate a diverse selection of functional groups that can be used as the basis for further synthetic modification. Like conventional synthetic polymers, polypeptide-based materials can be designed to respond to external stimuli (e.g., light and temperature) or changes in the environmental conditions (e.g., redox reactions and pH). In particular, pH-responsive polypeptide-based systems represent an interesting avenue for the preparation of novel drug delivery systems that can exploit physiological or pathological pH variations within the body, such as those that arise in the extracellular tumour microenvironment, intracellularly within endosomes/lysosomes, or during tissue inflammation. Here, we review the significant progress made in advancing pH-responsive polypeptides and polymer-peptide hybrid materials during the last five years, with a particular emphasis on the manipulation of ionisable functional groups, pH-labile linkages, pH-sensitive changes to secondary structure, and supramolecular interactions.


2018 ◽  
Vol 53 ◽  
pp. 04016
Author(s):  
Juan Ma ◽  
Fang-yan Chen ◽  
Yu-bin Tang ◽  
Xin-gang Wang

Aiming at effectively controlling nonylphenol (NP) pollution, three bacterial strains were isolated from activated sludge and landfill leachate, which could grow with nonylphenol as sole carbon and energy source. The three nonylphenol-degrading bacteria isolated were named as WN6, SLY9 and SLY10, respectively. The morphological observation and 16S rDNA identification revealed that the strains belonged to Serratia sp., Klebsiella sp. and Pseudomonas putida, respectively. WN6 and SLY9 contained ALK gene, while WN6 and SLY10 harbored C12O genes. The three strains were combined together to form complex microorganisms ZJF. The ratio of Serratia sp. to Klebsiella sp. to Pseudomonas putida was 2:1:2 (volume ratio of bacterial suspension). Under the conditions that temperature was 30 ℃, pH was 6, inoculation amount was 10% (volume ratio), initial concentration of NP solutions was 20 mg/L, NP degradation rate by ZJF reached 73.82%, compared with any single strain of the three bacteria, NP degradation rate by ZJF increased more than 15% during 6 days. Bioremediation of nonylphenol-polluted the Yangtze River and the Ancient Canal water by ZJF ware simulated. After a 6-day incubation period, the degrading rate of nonylphenol in Ancient Canal water was close to 80%, and the degrading rate of nonylphenol in Yangtze River water was 72.84%.


2006 ◽  
Vol 33 (10) ◽  
pp. 893 ◽  
Author(s):  
Hendrik Bargel ◽  
Kerstin Koch ◽  
Zdenek Cerman ◽  
Christoph Neinhuis

The cuticle is the main interface between plants and their environment. It covers the epidermis of all aerial primary parts of plant organs as a continuous extracellular matrix. This hydrophobic natural composite consists mainly of the biopolymer, cutin, and cuticular lipids collectively called waxes, with a high degree of variability in composition and structure. The cuticle and cuticular waxes exhibit a multitude of functions that enable plant life in many different terrestrial habitats and play important roles in interfacial interactions. This review highlights structure–function relationships that are the subjects of current research activities. The surface waxes often form complex crystalline microstructures that originate from self-assembly processes. The concepts and results of the analysis of model structures and the influence of template effects are critically discussed. Recent investigations of surface waxes by electron and X-ray diffraction revealed that these could be assigned to three crystal symmetry classes, while the background layer is not amorphous, but has an orthorhombic order. In addition, advantages of the characterisation of formation of model wax types on a molecular scale are presented. Epicuticular wax crystals may cause extreme water repellency and, in addition, a striking self-cleaning property. The principles of wetting and up-to-date concepts of the transfer of plant surface properties to biomimetic technical applications are reviewed. Finally, biomechanical studies have demonstrated that the cuticle is a mechanically important structure, whose properties are dynamically modified by the plant in response to internal and external stimuli. Thus, the cuticle combines many aspects attributed to smart materials.


2016 ◽  
Vol 198 (6) ◽  
pp. 994-1004 ◽  
Author(s):  
Arup Dey ◽  
Christopher N. Vassallo ◽  
Austin C. Conklin ◽  
Darshankumar T. Pathak ◽  
Vera Troselj ◽  
...  

ABSTRACTMyxobacteria form complex social communities that elicit multicellular behaviors. One such behavior is kin recognition, in which cells identify siblings via their polymorphic TraA cell surface receptor, to transiently fuse outer membranes and exchange their contents. In addition, outer membrane exchange (OME) regulates behaviors, such as inhibition of wild-typeMyxococcus xanthus(DK1622) from swarming. Here we monitored the fate of motile cells and surprisingly found they were killed by nonmotile siblings. The kill phenotype required OME (i.e., was TraA dependent). The genetic basis of killing was traced to ancestral strains used to construct DK1622. Specifically, the kill phenotype mapped to a large “polyploid prophage,” Mx alpha. Sensitive strains contained a 200-kb deletion that removed two of three Mx alpha units. To explain these results, we suggest that Mx alpha expresses a toxin-antitoxin cassette that uses the OME machinery ofM. xanthusto transfer a toxin that makes the population “addicted” to Mx alpha. Thus, siblings that lost Mx alpha units (no immunity) are killed by cells that harbor the element. To test this, an Mx alpha-harboring laboratory strain was engineered (bytraAallele swap) to recognize a closely related species,Myxococcus fulvus. As a result,M. fulvus, which lacks Mx alpha, was killed. These TraA-mediated antagonisms provide an explanation for how kin recognition specificity might have evolved in myxobacteria. That is, recognition specificity is determined by polymorphisms intraA, which we hypothesize were selected for because OME with non-kin leads to lethal outcomes.IMPORTANCEThe transition from single cell to multicellular life is considered a major evolutionary event. Myxobacteria have successfully made this transition. For example, in response to starvation, individual cells aggregate into multicellular fruiting bodies wherein cells differentiate into spores. To build fruits, cells need to recognize their siblings, and in part, this is mediated by the TraA cell surface receptor. Surprisingly, we report that TraA recognition can also involve sibling killing. We show that killing originates from a prophage-like element that has apparently hijacked the TraA system to deliver a toxin to kin. We hypothesize that this killing system has imposed selective pressures on kin recognition, which in turn has resulted in TraA polymorphisms and hence many different recognition groups.


1980 ◽  
Vol 152 (4) ◽  
pp. 808-822 ◽  
Author(s):  
G Damiani ◽  
C Kiyotaki ◽  
W Soeller ◽  
M Sasada ◽  
J Peisach ◽  
...  

Whereas phagocytic cells from normal individuals have the capacity to kill ingested bacteria and parasites, those from patients with several uncommon genetic deficiency diseases are known to be defective in bactericidal activity. Studies on neutrophils of these patients have revealed fundamental defects in their ability to reduce molecular oxygen and metabolize it to superoxide anion, hydrogen peroxide, and oxygen radicals. In the present experiments, we describe a clone of a continuous murine macrophage-like cell line, J774.16, that, upon appropriate stimulation, activates the hexose monophosphate shunt, and produces superoxide anion and hydrogen peroxide. With nitroblue tetrazolium to select against cells capable of being stimulated by phorbol myristate acetate to reduce the dye to polymer--formazan--which is toxic fot cells, we have selected for variants that are defective in oxygen metabolism. Four of these subclones have been characterized and found to be lacking in the ability (a) to generate superoxide anion, as measured by cytochrome c reduction; (b) to produce hydrogen peroxide, as measured by the ability to form complex I with cytochrome c peroxidase; and (c) to be stimulated to oxidize glucose via the hexose monophosphate shunt. These variants appear to represent a useful model for studying the molecular basis for macrophage cytocidal activity.


2013 ◽  
Vol 41 (1) ◽  
pp. 393-398 ◽  
Author(s):  
Sabrina Fröls

Biofilms or multicellular structures become accepted as the dominant microbial lifestyle in Nature, but in the past they were only studied extensively in bacteria. Investigations on archaeal monospecies cultures have shown that many archaeal species are able to adhere on biotic and abiotic surfaces and form complex biofilm structures. Biofilm-forming archaea were identified in a broad range of extreme and moderate environments. Natural biofilms observed are mostly mixed communities composed of archaeal and bacterial species of various abundances. The physiological functions of the archaea identified in such mixed communities suggest a significant impact on the biochemical cycles maintaining the flow and recycling of the nutrients on earth. Therefore it is of high interest to investigate the characteristics and mechanisms underlying the archaeal biofilm formation. In the present review, I summarize and discuss the present investigations of biofilm-forming archaeal species, i.e. their diverse biofilm architectures in monospecies or mixed communities, the identified EPSs (extracellular polymeric substances), archaeal structures mediating surface adhesion or cell–cell connections, and the response to physical and chemical stressors implying that archaeal biofilm formation is an adaptive reaction to changing environmental conditions. A first insight into the molecular differentiation of cells within archaeal biofilms is given.


Sign in / Sign up

Export Citation Format

Share Document