scholarly journals Injection Molded of Bio-Micro-Composites from Natural Fibers and Polylactic Acid

2017 ◽  
Vol 2 (1) ◽  
pp. 21-26
Author(s):  
Subyakto Subyakto ◽  
Euis Hermiati ◽  
Nanang Masruchin ◽  
Ismadi Ismadi ◽  
Kurnia Wiji Prasetiyo ◽  
...  

Green composites were needed by automotive industries because they are environmentally friendly, recyclable, lightweight and strong. Natural fibers such as bamboo and sisal are potential source of these materials and can be used as substitutes of fiber glass which is hard to recycle and not renewable.  In this experiment, bio-composites made from micro fibers of betung bamboo (Dendrocalamus asper) and sisal (Agave sisalana) mixed with a natural polymer of polylactic acid (PLA) were developed that may used for automotive application. Bamboo or sisal fibers were converted into pulp and processed using a disc refiner to produce microfibrillated cellulose (MFC) with fiber diameter around 10 µm. MFC was mixed with PLA and triacetin and dried. The mixture was processed in a mixer at temperature of 170ºC, speed of 60 rpm for 20 min. The compound mixture was removed and processed into pellets using a pelletizer at 170ºC. Pellets were processed using injection molding machine. The compositions of fibers/PLA were 10/90, 20/80, and 30/70. The mechanical properties were tested in accordance with ASTM standards. Result shown that optimum composition ratio of bamboo fibers/PLA was 20/80 which gave flexural strength of 62.30 MPa, flexural modulus of 3.89 GPa, tensile strength of 44.55 MPa, tensile modulus of 1.20 GPa, and hardness of 112.90 R. While the optimum composition ratio of sisal fibers/PLA was 30/70 which gave flexural strength of 67.83 MPa, flexural modulus of 4.43 GPa, tensile strength of 48.18 MPa, tensile modulus of 1.13 GPa, and hardness of 110.50 R.

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3335
Author(s):  
Jorge R. Robledo-Ortíz ◽  
Alan S. Martín del Campo ◽  
Juan A. Blackaller ◽  
Martín E. González-López ◽  
Aida A. Pérez Fonseca

Sugarcane straw (SCS) is a common agro-industrial waste that is usually incinerated or discarded in fields after harvesting, increasing the importance of developing added-value applications for this residue. In this study, sustainable biocomposites were produced, and the effect of sugarcane straw as a filler/reinforcement of commercial biopolymers was evaluated. Biocomposites were prepared using polylactic acid (PLA), polyhydroxybutyrate (PHB), polyhydroxybutyrate-co-hydroxyvalerate (PHBV), or green polyethylene (Green-PE) with different fiber contents (20, 30, and 40 wt.%). Dry-blending followed by compression molding was used for the biocomposites preparation. The results showed that PLA, PHB, and PHBV biocomposites retained the same impact strength as the neat matrices, even with 40 wt.% of sugarcane straw. The flexural and tensile modulus of PLA, PHB, and PHBV biocomposites increased with 20% of SCS, whereas, in Green-PE biocomposites, these properties increased at all fiber contents. Since any compatibilizer was used, both the flexural and tensile strength decreased with the addition of SCS. However, even with the highest content of SCS, the tensile and flexural strength values were around 20 MPa, making these materials competitive for specific industrial applications.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3427-3442
Author(s):  
Vedat Çavuş ◽  
Fatih Mengeloğlu

Neat polypropylene (PP)- and post-industrial recycled polypropylene (rPP)-based wood-plastic composites (WPC) were manufactured using 40% mahogany wood flour (WF). The effect of particle size (0.074 to 0.149 mm, 0.177 to 0.250 mm, and 0.400 to 0.841 mm) on the selected properties of PP and rPP composites was studied. The influence of 3% maleic anhydride grafted polypropylene (MAPP) presence in the formulation was also evaluated. Test specimens were manufactured using a combination of extrusion and injection molding processes. The density and mechanical properties, such as flexural strength, flexural modulus, tensile strength, tensile modulus, elongation at break, hardness and impact strength values were determined. Morphology of the manufactured composites was also studied using scanning electron microscopy (SEM) analysis. Results showed that the particle size, polypropylene type (neat or recycled), and presence of MAPP had important effects on WPC’s properties. Density, flexural modulus, tensile modulus, and impact strength values increased with decreased particle size regardless of the presence of MAPP. Flexural strength values increased with decreased particle size without MAPP. Regardless of particle size, addition of MAPP in composites provided higher flexural strength, flexural modulus, tensile strength, and tensile modulus values but lower elongation at break values compared to composites without MAPP.


2014 ◽  
Vol 21 (3) ◽  
pp. 323-328 ◽  
Author(s):  
Huseyin Unal ◽  
A. Mimaroglu

AbstractIn this study, the effect of addition of Rockforce mineral and glass fiber fillers on the mechanical properties and morphological characteristics of polyamide-6 composites were evaluated and compared. Reinforcements, single and mixed compounds by various weight ratios between 10 and 30 wt%, were added to polyamide-6 polymer. Uniaxial tensile, Izod impact, and flexural tests were carried out. Tensile strength, elongation at break, tensile modulus, flexural strength, flexural modulus, and impact strength were obtained. The results showed that the tensile strength, tensile modulus, flexural strength, and flexural modulus of polyamide-6 composite increased with the increase in the glass fiber ratio and are slightly influenced by the addition of Rockforce mineral fibers. Moreover, the impact strength follows an increasing and decreasing profile, whereas elongation at break values decreased with the increase in reinforcement ratio. Finally, scanning electron microscopy was used for comparison and evaluation of the fracture surface of the polyamide-6 composite.


2011 ◽  
Vol 471-472 ◽  
pp. 674-679 ◽  
Author(s):  
I.S. Aji ◽  
E.S. Zainuddin ◽  
Abdan Khalina ◽  
S.M. Sapuan

This work is aimed at achieving optimum processing parameters for Kenaf/PALF/HDPE. Processing parameters like temperature, speed of rotor and duration of composite mixing in an internal mixer were examined. Oven conditioned and unconditioned specimen were prepared and tested. The best tensile strength and tensile modulus were obtained at an optimum processing parameters of 190oC, 40rpm, and 15min for temperature of processing, speed of rotor and duration of mixing respectively, while 190oC, 40rpm and 20min gave the best flexural strength and 190oC, 40rpm and 25min for flexural modulus. Conditioning of composite tends to reduce its tensile modulus while increasing its strength and flexural modulus. All samples were produced at only 10w%(mass) of fibre in the composite at 1:1 and less than 0.3mm fibre ratio and length respectively. Utilization of these parameters according to end requirement can help in achieving optimum mechanical properties on hybridized composites.


2014 ◽  
Vol 1025-1026 ◽  
pp. 215-220 ◽  
Author(s):  
Sasirada Weerasunthorn ◽  
Pranut Potiyaraj

Fumed silica particles (SiO2) were directly added into poly (butylene succinate) (PBS) by melt mixing process. The effects of amount of fumed silica particles on mechanical properties of PBS/fumed silica composites, those are tensile strength, tensile modulus, impact strength as well as flexural strength, were investigated. It was found that the mechanical properties decreased with increasing fumed silica loading (0-3 wt%). In order to increase polymer-filler interaction, fumed silica was treated with 3-glycidyloxypropyl trimethoxysilane (GPMS), and its structure was analyzed by FT-IR spectrophotometry. The PBS/modified was found to possess better tensile strength, tensile modulus, impact strength and flexural strength that those of PBS/fumed silica composites.


2021 ◽  
Vol 11 (12) ◽  
pp. 5317
Author(s):  
Rafał Malinowski ◽  
Aneta Raszkowska-Kaczor ◽  
Krzysztof Moraczewski ◽  
Wojciech Głuszewski ◽  
Volodymyr Krasinskyi ◽  
...  

The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.


2011 ◽  
Vol 243-249 ◽  
pp. 494-498
Author(s):  
Hui Ming Bao

By means of the tests on the mechanics performance of the reinforcing concrete mixed with sisal fibers or rubber powder of certain content are investigated. The compressive strength, tensile strength and flexural strength, etc. are compared. The test indicates that when the test condition is same, the compressive strength, tensile strength and flexural strength of the sisal fibers concrete are better than those of the rubber powder’s. The sisal fiber concrete is environment friendly than the rubber powder concrete. And it has widely value of spread and utilization.


2021 ◽  
Vol 32 (2) ◽  
pp. 87-104
Author(s):  
Pui-Voon Yap ◽  
Ming-Yeng Chan ◽  
Seong-Chun Koay

This research work highlights the mechanical properties of multi-material by fused deposition modelling (FDM). The specimens for tensile and flexural test have been printed using polycarbonate (PC) material at different combinations of printing parameters. The effects of varied printing speed, infill density and nozzle diameter on the mechanical properties of specimens have been investigated. Multi-material specimens were fabricated with acrylonitrile butadiene styrene (ABS) as the base material and PC as the reinforced material at the optimum printing parameter combination. The specimens were then subjected to mechanical testing to observe their tensile strength, Young’s modulus, percentage elongation, flexural strength and flexural modulus. The outcome of replacing half of ABS with PC to create a multi-material part has been examined. As demonstrated by the results, the optimum combination of printing parameters is 60 mm/s printing speed, 15% infill density and 0.8 mm nozzle diameter. The combination of ABS and PC materials as reinforcing material has improved the tensile strength (by 38.46%), Young’s modulus (by 23.40%), flexural strength (by 23.90%) and flexural modulus (by 37.33%) while reducing the ductility by 14.31% as compared to pure ABS. The results have been supported by data and graphs of the analysed specimens.


2015 ◽  
Vol 1113 ◽  
pp. 99-104
Author(s):  
Mohamad Asnawi bin Ya’acob ◽  
Ku Halim Ku Hamid ◽  
Suffiyana Akhbar ◽  
Mohd Faizal Abdul Rahman

This work studies the performance of HDPE/kenaf biocomposite by varying the kenaf loading from 10 wt% to 50 wt%. Compounding has carried out by using single screw extruder. The result indicates that at 10 wt% of kenaf loading gave the highest tensile and impact strength which are25.32 MPa and 102.25 MPa respectively. Beside, at 10% to 50% of kenaf loading show increasing tensile modulus, flexural modulus and flexural strength with increment of kenaf fiber but decreasing in tensile strength and impact strength.


2016 ◽  
Vol 869 ◽  
pp. 249-254
Author(s):  
Lazaro Araújo Rohen ◽  
Anna Carolina Cerqueira Neves ◽  
Frederico Muylaert Margem ◽  
Carlos Maurício Fontes Vieira ◽  
Fabio de Oliveira Braga ◽  
...  

The use of natural fibers as reinforcement in polymer matrix composites is replacing the use of synthetic fibers, especially from an environmental standpoint. Indeed, natural fibers are biodegradable and renewable, with no aggression to the environment. Moreover, they are worldwide abundant with relatively low cost. It was found that fine fibers of sisal, with the thinnest diameters can achieve tensile strength on the order of 1000 MPa. In this work, tensile specimens were prepared with 30% in volume of sisal fibers with diameters between 0.1 and 0.10mm incorporated in a continuous and aligned way into epoxy matrix. The results showed a significant increase in tensile strength and elastic modulus of the composites as a function of the incorporated amount of thinner sisal fibers.


Sign in / Sign up

Export Citation Format

Share Document