scholarly journals Homeopathy: a possible weapon against multidrug-resistant bacteria to antibiotics

2021 ◽  
Vol 13 (47) ◽  
pp. 114-114
Author(s):  
Tânia Aguiar Passeti ◽  
Ana Paula Macedo Souza ◽  
Leandro Ribeiro Bissoli ◽  
Registila Libania Beltrame ◽  
Cidélia Paula Coelho ◽  
...  

Background: The antimicrobial resistance is a genetic phenomenon, related to the existence of the gens restrained in microorganism that codify different biochemical mechanisms that obstruct the drugs actions. Some species present resistance widespread in all over the world, like the case of Staphylococcus aureus. This is one of the main bacteria that, in a period of time, has got multiple resistance against the antibiotics, and it’s also, an important agent causative of the nosocomiais infections. The present report evaluated the action of the different homeopathic medicines about the growth of the bacteria Staphylococcus aureus and Staphylococcus aureus MRSA (Methicillin-resistant Staphylococcus aureus) “in vitro”. Methods: Doses of 150, 250 and 350 µL of the homeopathic medicines Silicea, Hepar sulfor, Belladona, Arnica montana, Mercurio solubilis and nosode of Stafilococcus aureus, in the dynamism 6cH, 12cH e 30cH had been placed in 3mL culture liquid Mueller Hinton. It was added to this blend 10 µL of a diluted bacterial solution 1/10, where of the solution in 0,5 of the Macfarley scale in 37°C, the growth in the tubes was evaluated in Spectrophotometric of 600 nm. Results: The results demonstrated that, for the Staphilococcus aureus, we have got significant bacteria inhibition in about 70 to 90% of the growth “in vitro”, provided by the homeopathic medicines Hepar sulfor in the dynamism of 30cH, Belladona in the dynamisms of 6cH and 30cH, in the Staphilococcus aureus nosode in the dynamisms 6cH and 30cH and Silicea in the dynamism of CH6, with regard to the control with alcohol 30%. The Staphilococcus aureus MRSA presented inhibition from 40% to 20% of the bacteria growth “in vitro” related to the control with alcohol 30%, with the same medicines used before. Conclusion: We can conclude that the homeopathic medicines have an inhibitory action in the bacteria growth, including in bacteria resistance to the antibiotics. This information can suggest that a concerted action of antibiotics and homeopathic medicines, could improve the action of the antibiotics in the bacteria causative of infections in the biological tissues.

2019 ◽  
Vol 20 (4) ◽  
pp. 956-964 ◽  
Author(s):  
DIAH AYUNINGRUM ◽  
RHESI KRISTIANA ◽  
AYUNDA AINUN NISA ◽  
SEPTHY KUSUMA RADJASA ◽  
SAKTI IMAM MUCHLISSIN ◽  
...  

Abstract. Ayuningrum D, Kristiana R, Nisa AA, Radjasa SK, Muchlissin SI, Radjasa OK, Sabdono A, Trianto A. 2019. Bacteria associated with tunicate, Polycarpa aurata, from Lease Sea, Maluku, Indonesia exhibiting anti-multidrug resistant bacteria. Biodiversitas 20: 956-964. Tunicate is a rich secondary metabolites producer with various biological activities whether as an original producer or produced by the associated microorganisms. In this study, a total of 11 tunicate specimens were identified as Polycarpa aurata with four color variations based on morphological characteristic and COI gene identification and BLAST analysis. The P. aurata associated-bacteria were isolated and tested for antimicrobial activity against multi-drug resistant (MDR) bacteria. A total of 86 axenic isolates were successfully purified. Furthermore, nine isolates (10.5%) exhibited antibacterial activity on preliminary screening. Nine prospective isolates were fermented in respective medium (Zobell 2216, modified M1 or modified ISP2 media) then extracted using ethyl acetate. The ethyl acetate extracts from liquid fermentation were tested against MDR Escherichia coli, MDR Bacillus cereus, Methicillin-Resistant Staphylococcus aureus (MRSA) and Methicillin-Sensitive and Staphylococcus aureus (MSSA). As a result, seven isolates (8.1%) still retained the activity at the extract concentration 150 µg/disk. Molecular analysis based on 16S rDNA sequencing revealed the most active isolates, TSB 47, TSC 10 and TSB 34 identified as Bacillus tropicus, Vibrio alginolyticus and Virgibacillus massiliensis, with BLAST homology 99%.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Muhammad Evy Prastiyanto ◽  
Prayoda Deri Tama ◽  
Ninda Ananda ◽  
Wildiani Wilson ◽  
Ana Hidayati Mukaromah

Objective. This study was aimed to evaluate the antibacterial activity of the latex of three species members of Jatropha (J. curcas, J. gossypilofia Linn., and J. multifida) against methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase- (ESBL-) producing Escherichia coli and ESBL-producing Klebsiella pneumonia, carbapenemase-resistant Enterobacteriaceae (CRE)-E. coli, K. pneumoniae-carbapenemase (KPC), and carbapenemase-resistant Pseudomonas aeruginosa (CRPA). Method. The antibacterial activities were calculated based on the inhibition zones using the Mueller–Hinton agar diffusion method, minimum inhibitory concentration (MIC) using Mueller–Hinton broth in a microdilution method, and minimum bactericidal concentration (MBC) using blood agar plate. Results. The latex of Jatropha showed antibacterial activities against the MRSA and CRPA. All latex of Jatropha appeared to have the antibacterial activities against MRSA and CRPA in the diffusion method (20.4–23.7 mm and 12–15 mm), MIC (0.19–6.25%, and 25%), and MBC (0.39–12.5% and 50%). Phytochemical screening of latex indicated the presence of flavonoids. Conclusions. The latex of J. curcas, J. gossypilofia Linn., and J. multifida has the potential to be developed as antibacterial agents, especially against MRSA and CRPA strain, but further in vivo research and discovery of the mode of its action are required to shed the light on the effects.


2020 ◽  
Vol 8 (10) ◽  
pp. 1487
Author(s):  
Marta Aires-de-Sousa ◽  
Claudine Fournier ◽  
Elizeth Lopes ◽  
Hermínia de Lencastre ◽  
Patrice Nordmann ◽  
...  

In order to evaluate whether seagulls living on the Lisbon coastline, Portugal, might be colonized and consequently represent potential spreaders of multidrug-resistant bacteria, a total of 88 gull fecal samples were screened for detection of extended-spectrum β-lactamase (ESBL)- or carbapenemase-producing Enterobacteriaceae for methicillin-resistant Staphylococcus aureus (MRSA) and for vancomycin-resistant Enterococci (VRE). A large proportion of samples yielded carbapenemase- or ESBL-producing Enterobacteriaceae (16% and 55%, respectively), while only two MRSA and two VRE were detected. Mating-out assays followed by PCR and whole-plasmid sequencing allowed to identify carbapenemase and ESBL encoding genes. Among 24 carbapenemase-producing isolates, there were mainly Klebsiella pneumoniae (50%) and Escherichia coli (33%). OXA-181 was the most common carbapenemase identified (54%), followed by OXA-48 (25%) and KPC-2 (17%). Ten different ESBLs were found among 62 ESBL-producing isolates, mainly being CTX-M-type enzymes (87%). Co-occurrence in single samples of multiple ESBL- and carbapenemase producers belonging to different bacterial species was observed in some cases. Seagulls constitute an important source for spreading multidrug-resistant bacteria in the environment and their gut microbiota a formidable microenvironment for transfer of resistance genes within bacterial species.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 85 ◽  
Author(s):  
Hercules Sakkas ◽  
Petros Bozidis ◽  
Afrodite Ilia ◽  
George Mpekoulis ◽  
Chrissanthy Papadopoulou

During a six-month period (October 2017–March 2018), the prevalence and susceptibility of important pathogenic bacteria isolated from 12 hospital raw sewage samples in North Western Greece was investigated. The samples were analyzed for methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum beta-lactamase (ESBL) producing Escherichia coli, carbapenemase-producing Klebsiella pneumoniae (CKP), and multidrug-resistant Pseudomonas aeruginosa. Antimicrobial susceptibility testing was performed using the agar diffusion method according to the recommendations of the Clinical and Laboratory Standards Institute. The diversity of carbapenemases harboring K. pneumoniae was examined by two phenotyping screening methods (modified Hodge test and combined disk test), a new immunochromatographic rapid assay (RESIST-4 O.K.N.V.) and a polymerase chain reaction (PCR). The results demonstrated the prevalence of MRSA, vancomycin-resistant Staphylococcus aureus (VRSA), VRE, and CKP in the examined hospital raw sewage samples. In addition, the aforementioned methods which are currently used in clinical laboratories for the rapid identification and detection of resistant bacteria and genes, performed sufficiently to provide reliable results in terms of accuracy and efficiency.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 665
Author(s):  
Iliana E Escobar ◽  
Alexis White ◽  
Wooseong Kim ◽  
Eleftherios Mylonakis

Multidrug-resistant pathogens pose a serious threat to human health. For decades, the antibiotic vancomycin has been a potent option when treating Gram-positive multidrug-resistant infections. Nonetheless, in recent decades, we have begun to see an increase in vancomycin-resistant bacteria. Here, we show that the nuclear factor-kappa B (NF-κB) inhibitor N-[3,5-Bis(trifluoromethyl)phenyl]-5-chloro-2-hydroxybenzamide (IMD0354) was identified as a positive hit through a Caenorhabditis elegans–methicillin-resistant Staphylococcus aureus (MRSA) infection screen. IMD0354 was a potent bacteriostatic drug capable of working at a minimal inhibitory concentration (MIC) as low as 0.06 µg/mL against various vancomycin-resistant strains. Interestingly, IMD0354 showed no hemolytic activity at concentrations as high as 16 µg/mL and is minimally toxic to C. elegans in vivo with 90% survival up to 64 µg/mL. In addition, we demonstrated that IMD0354′s mechanism of action at high concentrations is membrane permeabilization. Lastly, we found that IMD0354 is able to inhibit vancomycin-resistant Staphylococcus aureus (VRSA) initial cell attachment and biofilm formation at sub-MIC levels and above. Our work highlights that the NF-κB inhibitor IMD0354 has promising potential as a lead compound and an antimicrobial therapeutic candidate capable of combating multidrug-resistant bacteria.


Antibiotics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 28 ◽  
Author(s):  
Jean Machado ◽  
Maria do Socorro Costa ◽  
Saulo Tintino ◽  
Fábio Rodrigues ◽  
Camila Nobre ◽  
...  

Orbignya speciosa (babassu) is an important palm tree in Brazil whose fixed almond oil is used in popular medicine and especially in food, in addition to being a research target for the manufacture of biofuels. The aim of this study was to evaluate the fixed almond oil physicochemical characterization and its antibacterial activity in isolation and in association with aminoglycosides against standard and multidrug-resistant bacteria. Analyses such as water content, pH, acidity, peroxide index, relative density, and refractive index indicate the stability and chemical quality of the oil. In the oil’s GC/MS chemical composition analysis, a high saturated fatty acid (76.90%) content was observed. Lauric acid (56.28%) and oleic acid (23.10%) were the major oil components. In the antibacterial test, a more significant oil activity was observed against K. pneumoniae KP-ATCC 10031 (minimal inhibitory concentration (MIC) = 406.37 μg/mL) and Staphylococcus aureus ATCC 6538 (MIC = 812.75 μg/mL), but for the other strains—including standard and multi-resistant strains—the oil presented an MIC ≥ 1024 μg/mL. Furthermore, a synergistic effect was observed when the oil was associated with amikacin and gentamicin against S. aureus (SA-10) and an antagonistic effect was observed with amikacin against Escherichia coli. Data indicate the O. speciosa oil as a valuable nutritional source of lauric, oleic, and myristic fatty acids with an ability to modulate aminoglycoside activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tingting Feng ◽  
Sebastian Leptihn ◽  
Ke Dong ◽  
Belinda Loh ◽  
Yan Zhang ◽  
...  

Phage therapy represents a possible treatment option to cure infections caused by multidrug-resistant bacteria, including methicillin and vancomycin-resistant Staphylococcus aureus, to which most antibiotics have become ineffective. In the present study, we report the isolation and complete characterization of a novel phage named JD219 exhibiting a broad host range able to infect 61 of 138 clinical strains of S. aureus tested, which included MRSA strains as well. The phage JD419 exhibits a unique morphology with an elongated capsid and a flexible tail. To evaluate the potential of JD419 to be used as a therapeutic phage, we tested the ability of the phage particles to remain infectious after treatment exceeding physiological pH or temperature. The activity was retained at pH values of 6.0–8.0 and below 50°C. As phages can contain virulence genes, JD419’s complete genome was sequenced. The 45509 bp genome is predicted to contain 65 ORFs, none of which show homology to any known virulence or antibiotic resistance genes. Genome analysis indicates that JD419 is a temperate phage, despite observing rapid replication and lysis of host strains. Following the recent advances in synthetic biology, JD419 can be modified by gene engineering to remove prophage-related genes, preventing potential lysogeny, in order to be deployed as a therapeutic phage.


2021 ◽  
Vol 22 (18) ◽  
pp. 9695
Author(s):  
Wen-Shuo Kuo ◽  
Ping-Ching Wu ◽  
Chi-Yao Hung ◽  
Chia-Yuan Chang ◽  
Jiu-Yao Wang ◽  
...  

There is an urgent need for materials that can efficiently generate reactive oxygen species (ROS) and be used in photodynamic therapy (PDT) as two-photon imaging contrast probes. In this study, graphene quantum dots (GQDs) were subjected to amino group functionalization and nitrogen doping (amino-N-GQDs) via annealing and hydrothermal ammonia autoclave treatments. The synthesized dots could serve as a photosensitizer in PDT and generate more ROS than conventional GQDs under 60-s low-energy (fixed output power: 0.07 W·cm−2) excitation exerted by a 670-nm continuous-wave laser. The generated ROS were used to completely eliminate a multidrug-resistant strain of methicillin-resistant Staphylococcus aureus (MRSA), a Gram-positive bacterium. Compared with conventional GQDs, the amino-N-GQDs had superior optical properties, including stronger absorption, higher quantum yield (0.34), stronger luminescence, and high stability under exposure. The high photostability and intrinsic luminescence of amino-N-GQDs contribute to their suitability as contrast probes for use in biomedical imaging, in addition to their bacteria tracking and localization abilities. Herein, the dual-modality amino-N-GQDs in PDT easily eliminated multidrug-resistant bacteria, ultimately revealing their potential for use in future clinical applications.


2020 ◽  
Author(s):  
Dan Wu ◽  
Yijun Ding ◽  
Jinjing Zhang ◽  
Kaihu Yao ◽  
Wei Gao ◽  
...  

Abstract Background Escherichia coli (E.coli) rank one of the most common pathogens that can cause neonatal infections. The emergence of antibiotic-resistant bacteria is a major cause of treatment failure in newborn with infection. The purpose of this study was to describe the antibiotic resistance and multidrug-resistance of E.coli isolated from neonates with infection.Methods The antimicrobial susceptibility testing of the E. coli strains to selected antibiotics was assessed with the E-test technique on the Mueller-Hinton agar. The antimicrobials tests were included ceftazidime, cefuroxime, cefatriaxone, amoxicillin, amoxicillin-clavulanic acid, cefoperazone - sulbactam, meropenem, gentamicin, ciprofloxacin and sulfonamides. The minimal inhibitory concerntration (MIC) values of the antimicrobial agents selected for this study was determined by an agar dilution technique on Mueller-Hinton agar according to the Clinical and Laboratory Standards Institute recommendations. Results A total of 100 E. coli strains was isolated from phlegm (n = 78), blood (n = 10), cerebrospinal fluid (n = 5), and umbilical discharge (n = 7) of neonates hospitalized at Beijing Children’s Hospital. The highest resistance rate of E.coli was found in amoxicillin at 85%, followed by cefuroxime 65%, and cefatriaxone 60%, respectively. 6% and 5% of all isolates were resistant to amoxicillin/clavulanic acid and cefoperazone -sulbactam merely. The resistance rates to ceftazidime, gentamicin, ciprofloxacin and sulfonamides were 31%, 20%, 33%, 47%, respectively. All the isolates were susceptible to meropenem. Multidrug resistance was defined in E.coli as resistance to at least three antibiotic families. About 26% (26/100) of all the E.coli isolates were multidrug-resistant. The detection rate of ESBL-Producing E. coli was 55%. The rate in E. coli isolates from phlegm was higher than aseptic humoral. The difference was statistically significant (P < 0.05). It is worth noting that the majority of the isolates were also resistant to non-β-lactam antimicrobial agents, but the resistant rates were significantly lower than extended-spectrum β-lactamases.Conclusions: Multi-drug-resistant E.coli has become a thorny problem in clinical treatment. It is necessary to monitor E. coli resistance.


2018 ◽  
Vol 3 (4) ◽  

Objective: determine the frequency of urinary tract infections associated with MDR bacteria, characteristics patients with such infections and the mortality rate associated in Hospital ISSSTECALI during 2015-2016. Design: Descriptive, observational, analytic, transversal Methods: We collected data from clinical files of each patient that had been diagnosed with a urinary tract infection and had an uroculture of 10x105 CFU of bacteria with a multidrug-resistant profile. It included, gender, age, comorbidities, predisposing risk factors, obtained isolation, sensibility pattern, days of stay and proper technique of culture. We calculated frequencies and rates. Results: During January 2015- November 2016 a total of 2401 urocultures were solicited, we isolated bacteria in 123 of them (5.12%). 94 urocultures were included, 71% of the cultures were from women with a median age of 68.14 years; comorbidities: Hypertension (50%), diabetes (41.5%), chronic renal disease (14.9%), history of stroke and bed-rest. An average of 14.15 days of stay was calculated. They all had a urinary catheter. Of the total of urocultures obtained, 54 urocultures demonstrated bacteria growth with a MDR phenotype (attack rate: 0.43 cases/1000 discharges) Escherichia coli was isolated in 26 (48.14%) cultures; Pseudomona aeruginosa 7.4%; and Klebsiella pneumonia 5.5%; its mechanism of resistance was calculated according to the reported phenotype on the antimicrobiogram, demonstrating resistance to more than two family of antibiotics. A mortality rate of 21.3% was calculated of which the direct cause was related to the infective process (rate: 0.23 deaths/1000 discharges). Conclusion: the isolation of bacteria with a multidrug-resistant profile is not very common; however, they generate a high morbimortality index and a great weight in resources to our unit. Recommendations: reinforcement of programs that encourage rational use of antibiotics as well as the control of nosocomial infections should be employed in the hospital.


Sign in / Sign up

Export Citation Format

Share Document