scholarly journals FAIR: a project to realize a user-friendly exchange of open weather data

2020 ◽  
Vol 17 ◽  
pp. 183-190
Author(s):  
Christopher W. Frank ◽  
Frank Kaspar ◽  
Jan D. Keller ◽  
Till Adams ◽  
Miriam Felkers ◽  
...  

Abstract. Access to high quality weather and climate data is crucial for a wide range of societal and economic issues. It allows optimising industrial processes, supports the identification of potential risks related to climate change or allows the development of corresponding adaptation and mitigation strategies. Although such data is freely available through Germany’s national meteorological service DWD (Deutscher Wetterdienst) since 2017, the application potential in industry and society has certainly not yet been fully unlocked. Major obstacles are the complexity of the raw data, as well as missing tools for their simple integration into existing industrial applications. The goal of the research project FAIR is to simplify the information exchange between the DWD and economical players. In order to reach this goal a requirement analysis with end-users of weather data from three different sectors was conducted. A central requirement regarding the site assessment of wind plants is quick and easy access to historical wind-series at specific sites. Preferably downloadable in formats like CSV or via an API. Event planning partners are interested in a quick access to health relevant weather information at their event location, and the E-mobility sector in temperature data along planned routes. In this paper, we summarize the results of the requirement analysis and present the deduced technical architecture and FAIR services aiming at a user-friendly exchange of weather data.

2019 ◽  
Vol 8 (4) ◽  
pp. 8040-8043

Mobile technology signifies an innovative approach to the modern education in the present times. In this era smartphones have been integrated into learning system by having different user friendly applications (APPs). The wide range of availability of smart phones connected to mobile network and the occurrence of APPs developed for the educational purposes provide us with the possibility and feasibility of mobile teaching and learning that turn out to be a boon in the educational sector nowadays. The wide-ranging use of Smartphones and different user-friendly gadgets has transformed the outmoded techniques of teaching and learning process entirely. Consequently the students are finding it more practical to understand through such devices reinforced by internet. This extensive usage of smartphones has given birth to loads of mobile application in Language teaching especially English. Abundant apps are available for language learners to refer through easy access to the internet to enhance their communication skills. Through such apps learning materials can be easily accessed and transferred due to the transportability and user-friendliness of such portable devices. The main objective of this paper is to identify the effectiveness of learning LSRW skills through mobile technology and to classify apps based on the learners’ level. The study also discusses the plan, technique, theory and instructive features that support the various mobile apps. Various apps are developed to increase the effectiveness of the communication skills of the learners wherein the prime emphasis is to be laid on the enhancing of basic communication skills such as listening, speaking, reading and writing skills with the help of Mobile phones.


2017 ◽  
Vol 26 (1) ◽  
pp. eRC01 ◽  
Author(s):  
Joao H. N. Palma

Aim of study: Climate data is a need for different types of modeling assessments, especially those involving process based modeling focusing on climate change impacts. However, there is a scarcity of tools delivering easy access to climate datasets to use in biological related modeling. This study aimed at the development of a tool that could provide an user-friendly interface to facilitate access to climate datasets, that are used to supply climate scenarios for the International Panel on Climate Change.Area of study: The tool provides daily datasets across Europe, and also parts of northern AfricaMaterial and Methods: The tool uses climatic datasets generated from third party sources (IPCC related) while a web based interface was developed in JavaScript to ease the access to the datasetsMain Results: The interface delivers daily (or monthly) climate data from a user-defined location in Europe for 7 climate variables: minimum and maximum temperature, precipitation, radiation, minimum and maximum relative humidity and wind speed). The time frame ranges from 1951 to 2100, providing the basis to use the data for climate change impact assessments. The tool is free and publicly available at http://www.isa.ulisboa.pt/proj/clipick/.Research Highlights: A new and easy-to-use tool is suggested that will promote the use of climate change scenarios across Europe, especially when daily time steps are needed. CliPick eases the communication between climatic and modelling communities such as agriculture and forestry.


2020 ◽  
Author(s):  
Klaus Zimmermann ◽  
Lars Bärring

<p>Climate indices play an important role in the practical use of climate and weather data. Their application spans a wide range of topics, from impact assessment in agriculture and urban planning, over indispensable advice in the energy sector, to important evaluation in the climate science community. Several widely used standard sets of indices exist through long-standing efforts of WMO and WCRP Expert Teams (ETCCDI and ET-SCI), as well as European initiatives (ECA&D) and more recently Copernicus C3S activities. They, however, focus on the data themselves, leaving much of the metadata to the individual user. Moreover, these core sets of indices lack a coherent metadata framework that would allow for the consistent inclusion of new indices that continue to be considered every day.</p><p>In the meantime, the treatment of metadata in the wider community has received much attention. Within the climate community efforts such as the CF convention and the much-expanded scope and detail of metadata in CMIP6 have improved the clarity and long-term usability of many aspects of climate data a great deal.</p><p>We present a novel approach to metadata for climate indices. Our format describes the existing climate indices consistent with the established standards, adding metadata along the lines of existing metadata specifications. The formulation of these additions in a coherent framework encompassing most of the existing climate index standards allows for its easy extension and inclusion of new climate indices as they are developed.</p><p>We also present Climix, a new Python software for the calculation of indices based on this description. It can be seen as an example implementation of the proposed standard and features high-performance calculations based on state-of-the-art infrastructure, such as Iris and Dask. This way, it offers shared memory and distributed parallel and out-of-core computations, enabling the efficient treatment of large data volumes as incurred by the high resolution, long time-series of current and future datasets.</p>


2019 ◽  
Author(s):  
James Ewen ◽  
Carlos Ayestaran Latorre ◽  
Arash Khajeh ◽  
Joshua Moore ◽  
Joseph Remias ◽  
...  

<p>Phosphate esters have a wide range of industrial applications, for example in tribology where they are used as vapour phase lubricants and antiwear additives. To rationally design phosphate esters with improved tribological performance, an atomic-level understanding of their film formation mechanisms is required. One important aspect is the thermal decomposition of phosphate esters on steel surfaces, since this initiates film formation. In this study, ReaxFF molecular dynamics simulations are used to study the thermal decomposition of phosphate esters with different substituents on several ferrous surfaces. On Fe<sub>3</sub>O<sub>4</sub>(001) and α-Fe(110), chemisorption interactions between the phosphate esters and the surfaces occur even at room temperature, and the number of molecule-surface bonds increases as the temperature is increased from 300 to 1000 K. Conversely, on hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>, most of the molecules are physisorbed, even at high temperature. Thermal decomposition rates were much higher on Fe<sub>3</sub>O<sub>4</sub>(001) and particularly α-Fe(110) compared to hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>. This suggests that water passivates ferrous surfaces and inhibits phosphate ester chemisorption, decomposition, and ultimately film formation. On Fe<sub>3</sub>O<sub>4</sub>(001), thermal decomposition proceeds mainly through C-O cleavage (to form surface alkyl and aryl groups) and C-H cleavage (to form surface hydroxyls). The onset temperature for C-O cleavage on Fe<sub>3</sub>O<sub>4</sub>(001) increases in the order: tertiary alkyl < secondary alkyl < primary linear alkyl ≈ primary branched alkyl < aryl. This order is in agreement with experimental observations for the thermal stability of antiwear additives with similar substituents. The results highlight surface and substituent effects on the thermal decomposition of phosphate esters which should be helpful for the design of new molecules with improved performance.</p>


Alloy Digest ◽  
1970 ◽  
Vol 19 (11) ◽  

Abstract PLATINUM is a soft, ductile, white metal which can be readily worked either hot or cold. It has a wide range of industrial applications because of its excellent corrosion and oxidation resistance and its high melting point. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Pt-1. Producer or source: Matthey Bishop Inc..


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


2020 ◽  
Vol 15 (1) ◽  
pp. 787-796 ◽  
Author(s):  
Marek Kieliszek ◽  
Kamil Piwowarek ◽  
Anna M. Kot ◽  
Katarzyna Pobiega

AbstractCellular biomass of microorganisms can be effectively used in the treatment of waste from various branches of the agro-food industry. Urbanization processes and economic development, which have been intensifying in recent decades, lead to the degradation of the natural environment. In the first half of the 20th century, problems related to waste management were not as serious and challenging as they are today. The present situation forces the use of modern technologies and the creation of innovative solutions for environmental protection. Waste of industrial origin are difficult to recycle and require a high financial outlay, while the organic waste of animal and plant origins, such as potato wastewater, whey, lignin, and cellulose, is dominant. In this article, we describe the possibilities of using microorganisms for the utilization of various waste products. A solution to reduce the costs of waste disposal is the use of yeast biomass. Management of waste products using yeast biomass has made it possible to generate new metabolites, such as β-glucans, vitamins, carotenoids, and enzymes, which have a wide range of industrial applications. Exploration and discovery of new areas of applications of yeast, fungal, and bacteria cells can lead to an increase in their effective use in many fields of biotechnology.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1711
Author(s):  
Heba A. Gad ◽  
Autumn Roberts ◽  
Samirah H. Hamzi ◽  
Haidy A. Gad ◽  
Ilham Touiss ◽  
...  

Jojoba is a widely used medicinal plant that is cultivated worldwide. Its seeds and oil have a long history of use in folklore to treat various ailments, such as skin and scalp disorders, superficial wounds, sore throat, obesity, and cancer; for improvement of liver functions, enhancement of immunity, and promotion of hair growth. Extensive studies on Jojoba oil showed a wide range of pharmacological applications, including antioxidant, anti-acne and antipsoriasis, anti-inflammatory, antifungal, antipyretic, analgesic, antimicrobial, and anti-hyperglycemia activities. In addition, Jojoba oil is widely used in the pharmaceutical industry, especially in cosmetics for topical, transdermal, and parenteral preparations. Jojoba oil also holds value in the industry as an anti-rodent, insecticides, lubricant, surfactant, and a source for the production of bioenergy. Jojoba oil is considered among the top-ranked oils due to its wax, which constitutes about 98% (mainly wax esters, few free fatty acids, alcohols, and hydrocarbons). In addition, sterols and vitamins with few triglyceride esters, flavonoids, phenolic and cyanogenic compounds are also present. The present review represents an updated literature survey about the chemical composition of jojoba oil, its physical properties, pharmacological activities, pharmaceutical and industrial applications, and toxicity.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1058
Author(s):  
Hikaru Okubo ◽  
Haruka Kaneyasu ◽  
Tetsuya Kimura ◽  
Patchiya Phanthong ◽  
Shigeru Yao

Each year, increasing amounts of plastic waste are generated, causing environmental pollution and resource loss. Recycling is a solution, but recycled plastics often have inferior mechanical properties to virgin plastics. However, studies have shown that holding polymers in the melt state before extrusion can restore the mechanical properties; thus, we propose a twin-screw extruder with a molten resin reservoir (MSR), a cavity between the screw zone and twin-screw extruder discharge, which retains molten polymer after mixing in the twin-screw zone, thus influencing the polymer properties. Re-extruded recycled polyethylene (RPE) pellets were produced, and the tensile properties and microstructure of virgin polyethylene (PE), unextruded RPE, and re-extruded RPE moldings prepared with and without the MSR were evaluated. Crucially, the elongation at break of the MSR-extruded RPE molding was seven times higher than that of the original RPE molding, and the Young’s modulus of the MSR-extruded RPE molding was comparable to that of the virgin PE molding. Both the MSR-extruded RPE and virgin PE moldings contained similar striped lamellae. Thus, MSR re-extrusion improved the mechanical performance of recycled polymers by optimizing the microstructure. The use of MSRs will facilitate the reuse of waste plastics as value-added materials having a wide range of industrial applications.


2021 ◽  
Vol 9 (2) ◽  
pp. 336
Author(s):  
Laura Matarredona ◽  
Mónica Camacho ◽  
Basilio Zafrilla ◽  
Gloria Bravo-Barrales ◽  
Julia Esclapez ◽  
...  

Haloarchaea can survive and thrive under exposure to a wide range of extreme environmental factors, which represents a potential interest to biotechnology. Growth responses to different stressful conditions were examined in the haloarchaeon Haloferax mediterranei R4. It has been demonstrated that this halophilic archaeon is able to grow between 10 and 32.5% (w/v) of sea water, at 32–52 °C, although it is expected to grow in temperatures lower than 32 °C, and between 5.75 and 8.75 of pH. Moreover, it can also grow under high metal concentrations (nickel, lithium, cobalt, arsenic), which are toxic to most living beings, making it a promising candidate for future biotechnological purposes and industrial applications. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis quantified the intracellular ion concentrations of these four metals in Hfx. mediterranei, concluding that this haloarchaeon can accumulate Li+, Co2+, As5+, and Ni2+ within the cell. This paper is the first report on Hfx. mediterranei in which multiple stress conditions have been studied to explore the mechanism of stress resistance. It constitutes the most detailed study in Haloarchaea, and, as a consequence, new biotechnological and industrial applications have emerged.


Sign in / Sign up

Export Citation Format

Share Document