Preparations for the ITRF2020 at TU Wien

Author(s):  
Anna Zessner-Spitzenberg ◽  
David Mayer ◽  
Andreas Hellerschmied ◽  
Markus Mikschi ◽  
Sigrid Böhm

<p>The next International Terrestrial Reference Frame (ITRF), ITRF2020, will be released in early 2021 and preparations are entering the final phase. It will be realized by using the observations of the space geodetic techniques Very Long Baseline Interferometry (VLBI), Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS).<br>The Vienna VLBI group is planning to contribute to the ITRF2020. This poster will present the goals, the methodology and preparations for our contribution. In order to analyse the VLBI observation sessions, the Vienna VLBI and Satellite Software (VieVS) will be used. The poster will focus on the influence of applying the gravitational deformation and the atmospheric loading on the individual solutions and the ITRF.  For this purpose, a selected list of more than 800 sessions of the last 40 years, which was released by the International VLBI Service for Geodesy and Astrometry (IVS) to verify the latest changes in the implementation, will be analysed and the results will be presented.</p>

Author(s):  
Giampiero Sindoni ◽  
Claudio Paris ◽  
Cristian Vendittozzi ◽  
Erricos C. Pavlis ◽  
Ignazio Ciufolini ◽  
...  

Satellite Laser Ranging (SLR) makes an important contribution to Earth science providing the most accurate measurement of the long-wavelength components of Earth’s gravity field, including their temporal variations. Furthermore, SLR data along with those from the other three geometric space techniques, Very Long Baseline Interferometry (VLBI), Global Navigation Satellite Systems (GNSS) and DORIS, generate and maintain the International Terrestrial Reference Frame (ITRF) that is used as a reference by all Earth Observing systems and beyond. As a result we obtain accurate station positions and linear velocities, a manifestation of tectonic plate movements important in earthquake studies and in geophysics in general. The “geodetic” satellites used in SLR are passive spheres characterized by very high density, with little else than gravity perturbing their orbits. As a result they define a very stable reference frame, defining primarily and uniquely the origin of the ITRF, and in equal shares, its scale. The ITRF is indeed used as “the” standard to which we can compare regional, GNSS-derived and alternate frames. The melting of global icecaps, ocean and atmospheric circulation, sea-level change, hydrological and internal Earth-mass redistribution are nowadays monitored using satellites. The observations and products of these missions are geolocated and referenced using the ITRF. This allows scientists to splice together records from various missions sometimes several years apart, to generate useful records for monitoring geophysical processes over several decades. The exchange of angular momentum between the atmosphere and solid Earth for example is measured and can be exploited for monitoring global change. LARES, an Italian Space Agency (ASI) satellite, is the latest geodetic satellite placed in orbit. Its main contribution is in the area of geodesy and the definition of the ITRF in particular and this presentation will discuss the improvements it will make in the aforementioned areas.


2021 ◽  
Author(s):  
Jungang Wang ◽  
Kyriakos Balidakis ◽  
Maorong Ge ◽  
Robert Heinkelmann ◽  
Harald Schuh

<p>The terrestrial and celestial reference frames are linked by the Earth Orientation Parameters (EOP), which describe the irregularities of the Earth's rotation and are determined by the space geodetic techniques, namely, Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS). The satellite geodetic techniques (SLR, GNSS, and DORIS) cannot determine the UT1-UTC or celestial pole offsets (CPO), rendering VLBI the only technique capable of determining full EOP set. On the other hand, the GNSS technique provides precise polar motion estimates due to the continuous observations from a globally distributed network. Integrating VLBI and GNSS provides the full set of EOP and guarantees a superior accuracy than any single-technique solution.</p><p>In this study we focus on the integrated estimation of the full EOP set from GNSS and VLBI. Using five VLBI continuous observing campaigns (CONT05–CONT17), the GNSS and VLBI observations are processed concurrently in a common least-squares estimator. The impact of applying global ties (EOP), local ties, and tropospheric ties, and combinations thereof is investigated. The polar motion estimates in integrated solution are dominated by the huge GNSS observations, and the accuracy in terms of weighted root mean squares (WRMS) is ~40 μas compared to the IERS 14 C04 product, which is much better than that of the VLBI-only solution. The UT1-UTC and CPO in the integrated solution also show slight improvement compared to the VLBI-only solution. Moreover, the CPO agreement between the two networks in CONT17, i.e., the VLBA and IVS networks, shows an improvement of 20% to 40% in the integrated solution with different types of ties applied.</p>


2020 ◽  
Author(s):  
Jean-Yves Richard ◽  
Maria Karbon ◽  
Chrsitian Bizouard ◽  
Sebastien Lambert ◽  
Olivier Becker

<p>The Earth orientation parameters (EOP), the regular products of IERS Earth Orientation Centre, are computed at daily bases by combination of EOP solutions using different astro-geodetic techniques. At SYRTE we have developed a strategy of combination of the <strong>Global Navigation Satellite Systems</strong> (GNSS) and Very Long Baseline Interferometry (VLBI) techniques at normal equation level using Dynamo software maintained by CNES (France). This approach allows to produce the EOP at the daily bases, which contains polar coordinates (x,y) and their rates (x<sub>r</sub>,y<sub>r</sub>), universal time UT1 and its rate LOD, and corrections from IAU2000A/2006 precession-nutation model (dX,dY), and in the same run station coordinates constituting the terrestrial frame (TRF) and the quasar coordinates constituting the celestial frame (CRF). The recorded EOP solutions obtained from GNSS and VLBI combination at weekly bases is recently maintained by SYRTE.</p><p>The strategy applied to consistently combine  the IGS and IVS  solutions provided  in Sinex format over the time period 2000-2020 are presented and the resulting  EOP, station positions (TRF) and quasars coordinates (CRF) are analysed and evaluated, differences w.r.t. the individual solutions and the IERS time-series investigated.</p>


2019 ◽  
Vol 11 (3) ◽  
pp. 228 ◽  
Author(s):  
Xingxing Li ◽  
Hongbo Lv ◽  
Fujian Ma ◽  
Xin Li ◽  
Jinghui Liu ◽  
...  

It is widely known that in real-time kinematic (RTK) solution, the convergence and ambiguity-fixed speeds are critical requirements to achieve centimeter-level positioning, especially in medium-to-long baselines. Recently, the current status of the global navigation satellite systems (GNSS) can be improved by employing low earth orbit (LEO) satellites. In this study, an initial assessment is applied for LEO constellations augmented GNSS RTK positioning, where four designed LEO constellations with different satellite numbers, as well as the nominal GPS constellation, are simulated and adopted for analysis. In terms of aforementioned constellations solutions, the statistical results of a 68.7-km baseline show that when introducing 60, 96, 192, and 288 polar-orbiting LEO constellations, the RTK convergence time can be shortened from 4.94 to 2.73, 1.47, 0.92, and 0.73 min, respectively. In addition, the average time to first fix (TTFF) can be decreased from 7.28 to 3.33, 2.38, 1.22, and 0.87 min, respectively. Meanwhile, further improvements could be satisfied in several elements such as corresponding fixing ratio, number of visible satellites, position dilution of precision (PDOP) and baseline solution precision. Furthermore, the performance of the combined GPS/LEO RTK is evaluated over various-length baselines, based on convergence time and TTFF. The research findings show that the medium-to-long baseline schemes confirm that LEO satellites do helpfully obtain faster convergence and fixing, especially in the case of long baselines, using large LEO constellations, subsequently, the average TTFF for long baselines has a substantial shortened about 90%, in other words from 12 to 2 min approximately by combining with the larger LEO constellation of 192 or 288 satellites. It is interesting to denote that similar improvements can be observed from the convergence time.


2009 ◽  
Vol 5 (H15) ◽  
pp. 216-216
Author(s):  
Harald Schuh ◽  
Johannes Boehm ◽  
Sigrid Englich ◽  
Axel Nothnagel

AbstractVery Long Baseline Interferometry (VLBI) is the only space geodetic technique which is capable of estimating the Earth's phase of rotation, expressed as Universal Time UT1, over time scales of a few days or longer. Satellite-observing techniques like the Global Navigation Satellite Systems (GNSS) are suffering from the fact that Earth rotation is indistinguishable from a rotation of the satellite orbit nodes, which requires the imposition of special procedures to extract UT1 or length of day information. Whereas 24 hour VLBI network sessions are carried out at about three days per week, the hour-long one-baseline intensive sessions (‘Intensives’) are observed from Monday to Friday (INT1) on the baseline Wettzell (Germany) to Kokee Park (Hawaii, U.S.A.), and from Saturday to Sunday on the baseline Tsukuba (Japan) to Wettzell (INT2). Additionally, INT3 sessions are carried out on Mondays between Wettzell, Tsukuba, and Ny-Alesund (Norway), and ultra-rapid e-Intensives between E! urope and Japan also include the baseline Metsähovi (Finland) to Kashima (Japan). The Intensives have been set up to determine daily estimates of UT1 and to be used for UT1 predictions. Because of the short duration and the limited number of stations the observations can nowadays be e-transferred to the correlators, or to a node close to the correlator, and the estimates of UT1 are available shortly after the last observation thus allowing the results to be used for prediction purposes.


2012 ◽  
Vol 482-484 ◽  
pp. 75-80
Author(s):  
Yong Jiang ◽  
You Xiang Cui ◽  
Bu Feng Li

Position on the planet has always been vitally important to human beings and today our exact position is something that we can obtain with ease. Among the most stunning technological developments in recent years have been the immense advances in the realm of satellite navigation or Global Navigation Satellite Systems (GNSS) technologies. There are various causes of measurement error. The precision of positioning with GPS navigation depends on the one hand on the precision of the individual pseudorange measurements and on the other hand on the geometric configuration of the satellites used. In order to achieve an accuracy of one meter or better, additional measures are necessary. Reducing the effect of measurement errors can considerably increase the positioning accuracy. Differential GPS (DGPS) is a method for reducing the measurement error of GNNS.


2020 ◽  
pp. 39-44 ◽  
Author(s):  
S.L. Pasynok

The results of improvement of programs and methods of Earth’s orientation parameters (EOP) combination of vary long baseline interferometry (VLBI), global navigation satellite systems (GNSS) and satillite laser ranging (SLR) in Main Metrological Center of State Service for Time, Frequency and Earth’s orientation parameters evaluation are considered. Nowdays, the combination of different geodetic thecnics measurements in Main Metrological Center of State Service for time, frequency and Earth’s orientation parameters evaluation is provided both at the time raws level, and on the observations level. The increasing accuracy of Universal time UT1 was caused by using in combination observational data from new thirteen-meter antennas of the two-element very long base interferometer which was created in Institute of Applayed Astronomy of Russian Academy of Science. In general, increase in accuracy of combination values of the Earth’s orientation parameters was caused both by the increase in accuracy of the separate time raws, and by the improving of the combination algorithms.


2020 ◽  
Author(s):  
Kyriakos Balidakis ◽  
Susanne Glaser ◽  
Florian Zus ◽  
Tobias Nilsson ◽  
Harald Schuh ◽  
...  

<p align="justify"><span>We explore a new strategy to combine geodetic observations employing the existing and future systems. Imposing atmospheric ties on the combination at either the observation or normal equation level introduces a physical interpretation to the estimated atmospheric delay parameters, </span><span>that is, </span><span>zenith delays and gradients. In essence, besides combining station coordinates via local ties, we combine atmospheric delays via atmospheric ties. The purpose of this work is to assess the advantages and caveats of such a combination approach, on legacy, state-of-the-art, and next generation geodetic systems. We simulate 10 years of observations of all space geodetic techniques that currently contribute to the realization of the international terrestrial reference system; that is, very long baseline interferometry (VLBI), satellite laser ranging (SLR), global navigation satellite systems (GNSS), and Doppler orbitography and radiopositioning integrated by satellite (DORIS). The noise we inject in the simulated observations is technique-specific and - besides a thermal contribution - stems from three-state clock models and ray-traced delays from the latest ECMWF reanalysis, ERA5. To make the simulations more realistic, we estimate the probability of potential observations being successful by utilizing ERA5 fields, for example cloud fields for SLR. To avoid overoptimistic uncertainty estimates, we have accounted for the correlation between observations based on ERA5 fields. In a bias-free setup, we find that the improvement of employing atmospheric ties in addition to local ties to fuse multi-sensor observations, on the combined station coordinates and atmospheric delays is statistically significant for all techniques except for GNSS. We attribute the latter to the relatively good observing geometry. We also find that employing atmospheric ties reveals unaccounted systematic errors stemming from erroneous auxiliary data that are necessary for the reduction of geodetic observations, </span><span>such as </span><span>pressure </span><span>measurements, </span><span>cable </span><span>calibrations, </span><span>and range biases. Performing the observation combination with atmospheric ties improves the combined solution, </span><span>especially </span><span>for sparse observing geometry, and facilitates the detection of unaccounted systematic errors.</span></p>


2021 ◽  
Vol 6 (24) ◽  
pp. 161-173
Author(s):  
Nur Adilla Zulkifli ◽  
Ami Hassan Md Din ◽  
Wan Anom Wan Aris ◽  
Zheng Yong Chien

The Geocentric Datum of Malaysia (GDM200) is realised with respect to International Terrestrial Reference Frame (ITRF) 2000 at epoch 2nd January 2000. In comparison with the 2000 frame, ITRF2014 has significant improvement in terms of its definition and realisation. Moreover, several great earthquakes that struck the Indonesian region for the past decades have deformed the tectonic plate, resulting in a shifted GDM2000. These earthquakes, followed by post-seismic activities, has caused GDM2000 to become obsolete. Following that, the Department of Survey and Mapping Malaysia (DSMM) has taken the initiative to revise the coordinate of Malaysia Real-Time Kinematic Global Navigation Satellite Systems (GNSS) Network (MyRTKnet) stations in GDM2000 into a new set of coordinates. Therefore, this paper presents an effort to analyse the differences between coordinates in GDM2000 based on 2009 and 2016 revisions. In order to measure the discrepancy, forty-seven (47) MyRTKnet stations in Peninsular Malaysia were chosen to estimate the differences between the two (2) revisions. The coordinates obtained from MyRTKnet stations were then projected into Rectified Skewed Orthomorphic (RSO) coordinate system to compute the differences in horizontal position and ellipsoidal height. The finding showed that the discrepancy ranges from 0.8 to 11.8 cm, with the smallest values at SETI station and the biggest value at KRAI station. Meanwhile, for the differences in ellipsoidal height, LIPI station has the biggest value of 8.1 cm, followed by the smallest value of 0.4 cm at SETI station. In conclusion, as the differences in revision gave impact on the changes of coordinates of MyRTKnet stations in Peninsular Malaysia, the frequent revision of GDM2000 should also consider the latest frame to give better positional accuracy, and a proper datum transformation (ITRF2014 to ITRF2000) need to be implemented for mapping purposes.


2019 ◽  
Vol 50 ◽  
pp. 1-7
Author(s):  
Daniel Landskron ◽  
Johannes Böhm ◽  
Thomas Klügel ◽  
Torben Schüler

Abstract. During the Continuous Very Long Baseline Interferometry (VLBI) Campaign 2017 (CONT17), carried out from 28 November through 12 December 2017, an extensive data set of atmospheric observations was acquired at the Geodetic Observatory Wettzell. In addition to in situ measurements of temperature, humidity, pressure or wind speed at the surface, radiosonde ascents yielded meteorological parameters continually up to 25 km height, and integrated water vapor (IWV) was obtained at several elevations and azimuths from a water vapor radiometer. Troposphere delays estimated from Global Navigation Satellite Systems (GNSS) observations plus comparative values from two different Numerical Weather Models (NWMs) complete the abundance of data. In this presentation, we compare these data sets to parameters of the Vienna Mapping Functions 1 and 3 (VMF1 & VMF3), which are based on NWM data by the ECMWF, and to estimates of VLBI analysis using the Vienna VLBI and Satellite Software (VieVS). On the one hand, we contrast the variety of troposphere delays in zenith direction with each other, while on the other hand we utilize radiosonde data and meteorological observations at the site to create local mapping functions which can then be compared to VMF3 and VMF1 at Wettzell. In general, we thus received very good accordance between the different solutions. Also in terms of the mapping functions, the local radiosonde mapping function is in consistence with VMF1 and VMF3 with differences less than 5 mm at 5∘ elevation.


Sign in / Sign up

Export Citation Format

Share Document