Preliminary petrographic study of dolerites related to Sb-Au mineralizations: example of Ribeiro da Serra mine (Dúrico-Beirão mining district, NW Portugal) 

Author(s):  
Rui Frutuoso ◽  
Maria dos Anjos Ribeiro ◽  
Alexandre Lima ◽  
Helena Sant'Ovaia

<p>In the Dúrico-Beirão mining district, several occurrences of Sb-Au are known, which were exploited since the Roman occupation in Iberia until mid-last century. This region is located in the Central Iberian Zone of the Iberian Massif, part of the Ibero-Armorican Arc. The country rocks in the area consist of folded metasedimentary rocks from Cambrian to Carboniferous surrounded by syn- to post-orogenic Variscan granites. The Ribeiro da Serra Sb-Au mine, intensively exploited in the 19<sup>th</sup> century, occurs west of the western limb of the Valongo Anticline, a major ante-Stephanian structure with NW-SE trend. This Sb-Au deposit consist mainly of stibnite-bearing quartz veins hosted by slates, quartzites and conglomerates of the Schist-Greywacke Complex in a possible spatial relationship with dolerite dykes. These mafic dykes are emplaced in sub-parallel shear zones to the sinistral Douro Shear Zone and their presence may suggest the existence of mafic/ultramafic bodies at depth, which contributed to the occurrence of Sb-Au deposits.</p><p>This study aims to describe the dolerite dykes present through the region (petrographic composition, weathering, distribution, and dimension) considering a possible contribution for the Sb-Au occurrence. Dolerites are greyish-green colored and are intensely weathered. The samples surface shows a few millimeters of brownish supergenic alteration. The petrographic study highlighted an intense chloritization and saussuritization of plagioclase, whose tabular form and twinning are still preserved. The primary igneous texture is better preserved than the primary mineralogy. The texture is ophitic to sub-ophitic although the interstitial mass of the pyroxene is totally altered.  Chlorites occur as fresh, green-colored patches, sometimes with radiated fibrous textures. Frequent polycrystalline quartz lenses and veins occur, also as consequence of the hydrothermal/metamorphic alteration. The opaques, not yet identified, occur in a great modal percentage, and are frequently associated with titanite. They do not seem to have a special concentration related to quartz veins and lenses. Apatite is a frequent accessory phase and appears to be preferentially associated with opaque minerals.</p><p>The knowledge of the petrographic characteristics of these dolerite dykes, associated with geochemical data, can be a great contribution to the understanding of the distribution of Sb mineralization and corroborate the hypothesis of non-outcropping mafic/ultramafic bodies.</p><p> </p><p><strong>Acknowledgment</strong></p><p>The work was financial supported within the compass of the ERA-MIN/0005/2018—AUREOLE project, FEDER through operation POCI-01-0145-FEDER-007690 funded by the Programa Operacional Competitividade Internacionalização—COMPETE2020 and by National Funds through FCT within the ICT (reference UIDB/04683/2020).</p>

1992 ◽  
Vol 29 (3) ◽  
pp. 388-417 ◽  
Author(s):  
Andreas G. Mueller

The Norseman mining district in the Archean Yilgarn Block, Western Australia, has produced 140 t of gold and about 90 t of silver from 11.24 × 106 t of ore. The district is located within a metamorphic terrane of mafic and minor ultramafic greenstones, intruded by granite cupolas and swarms of porphyry dykes. The orebodies consist of laminated quartz veins, controlled by narrow (0.5–5 m) reverse shear zones that, in general, follow the contacts of metapyroxenite or porphyry dykes. Petrological studies of four shear zones, exposed on the Regent shaft 14 level, Ajax shaft 10 level, and in the stope above the North Royal shaft 5 level, show that the host rocks were metamorphosed to hornblende–plagioclase amphibolites and actinolite–chlorite rocks at temperatures of 500–550 °C prior to mineralization.At the localities studied, intense wall-rock replacement and low-grade (0.5 g/t) gold mineralization are confined to ductile or brittle–ductile shear structures. Alteration is similar in both ultramafic and mafic greenstones, and consists of an inner zone of biotite–quartz–calcite–plagioclase rock with minor actinolitic hornblende and quartz–calcite–actinolite veinlets, and an outer zone, locally developed, of chlorite–calcite–quartz rock. At an estimated pressure of 3 kbar (300 MPa), fluid temperatures during wall-rock alteration are constrained by the hydrothermal mineral assemblages to 480 ± 30 °C in two shear zones on the Regent shaft 14 level, and to 450 ± 20 °C in one shear zone in the North Royal shaft 5 level stope. The mole fraction of CO2 of the fluids is estimated at [Formula: see text], and the sulphur fugacity at 10−6 bar (10−1 kPa) (at 450 °C), based on the assemblage pyrrhotite + pyrite ± arsenopyrite. The development of an outer chloritic alteration zone at North Royal is related to the lower fluid temperature at this locality.High-grade (up to 75 g/t Au, 283 g/t Ag) veins formed within three of the shear zones studied at fluid temperatures of 400 °C and less, by the successive accretion of quartz laminae, separated by films of retrograde chlorite and sericite. The assemblage of ore minerals in the veins differs from that in the altered wall rocks, and includes disseminated galena, Pb–Bi–Ag tellurides, and native gold, which coprecipitated with the quartz. The orebodies at Norseman show affinities to Phanerozoic and Archean gold skarn deposits.


Gold mineralization in Adi Gozomo area in northwestern Ethiopia was studied through petrographic analysis from both surface and core rock samples. Mineralization is associated with Neoproterozoic basement rocks comprised of metavolcanic, metasedimentary rocks and intrusives. Four phases of deformation and development of NE-SW foliation and shear zones were some of the common geological structures. The hydrothermal gold deposit s cramped to shear zones, 2nd generation quartz veins, 4th phase of deformation, silisifed and carbonatized alteration zone. Based on decreasing order of abundance the ore assemblage of the area includes pyrite, chalcopyrite, sphalerite, pyrrhotite, arsenopyrite and gold. The petrographic data indicates that the deposit is hydrothermal vein related type and an island arc tectonic setting. The mineralization is comparable with other known orogenic sulfide deposit types of the country in particular and Arabian-Nubian Shield in general.


2006 ◽  
Vol 11 ◽  
pp. 9-32 ◽  
Author(s):  
Julie A. Hollis ◽  
Marie Keiding ◽  
Bo Møller Stensgaard ◽  
Jeroen A.M. Van Gool ◽  
Adam A. Garde

The Archaean North Atlantic Craton of West Greenland collided at c. 1.9 Ga with a lesser-known Archaean craton to the north, to form the Nagssugtoqidian orogen. The Palaeoproterozoic metamorphic grade and strain intensity decrease northward through the orogen, allowing investigation of the reworked Archaean components in its northern part. Two Archaean supracrustal belts in this region – the Ikamiut and Kangilinaaq belts – are investigated here using field mapping, aeromagnetic data, zircon geochronology, and geochemistry. Both belts comprise quartzo-feldspathic and pelitic metasedimentary rocks, amphibolite, and minor calc-silicate rocks, anorthosite and ultramafic rocks. PbPb and U-Pb dating of detrital zircons and host orthogneisses suggest deposition at c. 2800 Ma (Kangilinaaq belt) and after 2740 Ma (Ikamiut belt); both belts have zircons with Neoarchaean metamorphic rims. Metasedimentary rocks and orthogneisses at Ikamiut share similar steep REE signatures with strong LREE enrichment, consistent with local derivation of the sediment and deposition directly onto or proximal to the regional orthogneiss precursors. Zircon age data from Kangilinaaq indicate both local and distal sources for the sediment there. Geochemical data for Kangilinaaq amphibolites indicate bimodal, mixed felsic–mafic source rocks with island-arc basaltic affinities, consistent with a shelf or arc setting. Both belts experienced a similar tectono-metamorphic history involving Neoarchaean amphibolite facies peak metamorphism at c. 2740–2700 Ma, possibly due to continued emplacement of tonalitic and granodioritic magmas. Nagssugtoqidian lower amphibolite facies metamorphism at c. 1850 Ma was associated with development of the large-scale F2 folds and shear zones that control the present outcrop pattern. The observed differences in the sources of the Kangilinaaq and Ikamiut belts and their shared post-Archaean history suggest they were formed in different Neoarchaean environments proximal to and on a continental plate, and were amalgamated in a convergent margin setting shortly after their deposition.


2018 ◽  
Vol 14 (18) ◽  
pp. 305
Author(s):  
Daï Bi Seydou Mathurin ◽  
Ouattara Gbele ◽  
Koffi Gnammytchet Barthélémy ◽  
Gnanzou Allou ◽  
Coulibaly Inza

The lithological and structural observations of the region of Brobo (Central Côte d'Ivoire) indicate a succession of metasedimentary rocks (micaschists with cordierite, silstones, graphitic sediments, sandstones with amphibole-garnet, etc.) intermixed with volcanic rocks (rhyolite, dacite, andesite, basalt and the volcanoclastics). The whole is intruded by granites with one or two micas, sometimes porphyries, granodiorites, gabbros, and granite gneisses. Interpretations of Landsat ETM+ , RadarSat-1 and SRTM remote sensing imageries, as well as field data, revealed several lineament directions which, after field control, correspond to major faults and shear zones. These large structures show the N-S, NE-SW, NNE-SSW, E-W, NWSE, and NNW-SSE orientations. The field data also made it possible to describe several structures and to propose a preliminary geodynamic model for the setting and structuring of the formations of this region. This model suggests that the geodynamic took place in three stages: distension with a deformation of basement formations generating a gneissocity (D1), as well as deposits of sediments in the basins; followed by a NW-SE to E-W convergence generating a cleavage in the volcanogenic series (D2). This phase of deformation continues while creating, locally, a strain slip cleavage or a transposed schistosity. The third cleavage affects the volcanogenic series (fractures cleavages, D3) and ends in large corridors of ductile shear zones and associated faults.


Author(s):  
Daniel Peter Ferguson ◽  
Guoxiang Chi ◽  
Charles Normand ◽  
Patrick Ledru ◽  
Odile Maufrais-Smith

The Athabasca Basin in northern Saskatchewan is host to many world-class uranium deposits associated with the unconformity between the Paleoproterozoic sandstone of the basin and the underlying crystalline basement (Jefferson et al., 2007).  While the style and tonnage of these deposits vary, the current genetic model for unconformity-related uranium deposits has been a practical tool for exploration in the Athabasca Basin. However, the factors which control the location and formation of these deposits is still not fully understood. A paragenetic and petrographic study of mineralization along the Midwest Trend, located on the northeastern margin of the Athabasca Basin, aims to refine the current model and to address the general problem: What are the factors which control mineralization and non-mineralization? The Midwest Trend will be used as a "modèle réduit" for uranium mineralization, as it displays many features characteristic of unconformity type deposits. The Midwest Trend comprises three mineral leases that encompass two uranium deposits, the Midwest Main and Midwest A (Allen et al., 2017a, b). Mineralization occurs along a NE-trending graphitic structure, and is hosted by the sandstone, at the unconformity, and in much lesser amounts in the underlying basement rocks. Petrographic observations aided by the use of RAMAN spectroscopy and SEM-EDS, have been used to create a paragenetic sequence of mineralization (Fig.1). Future work will focus on fluid inclusion studies using microthermometry, LA-ICP-MS, and mass spectrometry of contained gases. References:Allen, T., Quirt, D., Masset, O. (2017a). Midwest A Uranium Deposit, Midwest Property, Northern Mining District, Saskatchewan, NTS Map Area 741/8: 2017 Mineral Resource Technical Report. AREVA Resources Canada Inc. Internal Report No. 17-CND-33-01. Allen, T., Quirt, D., Masset, O. (2017b). Midwest Main Uranium Deposit, Midwest Property, Northern Mining District, Saskatchewan, NTS Map Area 741/8: 2017 Mineral Resource Technical Report. AREVA Resources Canada Inc. Internal Report No. 17-CND-33-01. Jefferson, C.W., Thomas, D.J., Gandhi, S.S., Ramaekers, P., Delaney, G., Brisbin, D., Cutts, C., Portella, P., and Olson, R.A., 2007: Unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin 588, p. 23–67.


2007 ◽  
Vol 13 ◽  
pp. 41-44 ◽  
Author(s):  
Christian Knudsen ◽  
Jeroen A.M. Van Gool ◽  
Claus Østergaard ◽  
Julie A. Hollis ◽  
Matilde Rink-Jørgensen ◽  
...  

A gold prospect on central Storø in the Nuuk region of southern West Greenland is hosted by a sequence of intensely deformed, amphibolite facies supracrustal rocks of late Mesoto Neoarchaean age. The prospect is at present being explored by the Greenlandic mining company NunaMinerals A/S. Amphibolites likely to be derived from basaltic volcanic rocks dominate, and ultrabasic to intermediate rocks are also interpreted to be derived from volcanic rocks. The sequence also contains metasedimentary rocks including quartzites and cordierite-, sillimanite-, garnet- and biotite-bearing aluminous gneisses. The metasediments contain detrital zircon from different sources indicating a maximum age of the mineralisation of c. 2.8 Ga. The original deposition of the various rock types is believed to have taken place in a back-arc setting. Gold is mainly hosted in garnet- and biotite-rich zones in amphibolites often associated with quartz veins. Gold has been found within garnets indicating that the mineralisation is pre-metamorphic, which points to a minimum age of the mineralisation of c. 2.6 Ga. The geochemistry of the goldbearing zones indicates that the initial gold mineralisation is tied to fluid-induced sericitisation of a basic volcanic protolith. The hosting rocks and the mineralisation are affected by several generations of folding.


2010 ◽  
Vol 181 (3) ◽  
pp. 227-241 ◽  
Author(s):  
Dominique Gasquet ◽  
Jean-Michel Bertrand ◽  
Jean-Louis Paquette ◽  
Jérémie Lehmann ◽  
Gueorgui Ratzov ◽  
...  

Abstract U-Pb and Th-Pb dating of monazite from hydrothermal quartz veins (“Alpine veins”) from the Lauzière massif (North Belledonne) together with Ar/Ar ages of adularias from the same veins constrain the age of the last tectono-metamorphic events that affected the External Crystalline Massifs (ECM). Ages obtained are surprisingly young. The study of the structural context of the veins combined with our chronological data, allow us to propose a tectonic scenario of the northern ECM for the 15-5 Ma period, which was poorly documented so far. The quartz veins are of two types: (i) the oldest are poorly mineralized (chlorite and epidote), flat-lying veins. The quartz fibres (= extension direction) are near vertical and seem to be associated with a subvertical dissolution schistosity superimposed upon an early Alpine deformation underlined by “mini-biotite”. They bear a sub-horizontal stretching lineation; (ii) the youngest veins are very rich in various minerals (anatase, rutile, phénacite, meneghinite, beryl, synchysite, ….). They are almost vertical. Their “en echelon” geometry as well as the horizontal attitude of their quartz fibres show a dextral strike-slip regime. Two groups of Th-Pb ages have been obtained: 11 to 10 Ma and 7 to 5 Ma. They were obtained from the most recent veins (vertical veins) sampled in different areas of the massif. The ca. 10 Ma ages are related to veins in the Lauzière granite and its metamorphic country-rocks at about 2 km from the eastern contact of the massif, while the ages of ca. 5 Ma correspond to veins occurring in mylonites along this contact. Adularias provided Ar/Ar ages at ca. 7 Ma. By contrast, a monazite from a vein of the Pelvoux massif (Plan du Lac) yielded a Th-Pb age of 17.6 Ma but in a different structural setting. Except fission track ages, there are very little ages of this range published in the recent literature on the Alps. The latter concern always gold mineralized veins (NE Mont Blanc and SW Lepontine dome). The last compressive tectonic regime dated between 15 and 12 Ma is coeval with (i) the late “Roselend thrust” event, which is recorded in the Mont Blanc by shear-zones with vertical lineation, (ii) the last movements in the basal mylonites of the Swiss Nappes, (iii) the horizontal Alpine veins from the Mont Blanc and Belledonne massifs (with vertical quartz fibres), which are similar to the early veins of the Lauzière. On the contrary, the vertical veins of the Lauzière, dated between 11 and 5 Ma, correspond to a dextral strike slip regime. This suggests that most of the strike-slip tectonics along the ECM took place during two stages (ca. 10 Ma and ca. 7-5 Ma) and not only at 18 Ma as had been proposed previously. Our ages are consistent with the late Miocene-Pliocene overlap of the Digne thrust to the South and to part of the normal movement along the Simplon fault to the North. Thus, all the external crystalline massifs were tectonically active during the late Miocene. This suggests that tectonic events in the external alpine belt may have contributed to some extent to the geodynamical causes of the Messinian crisis.


2021 ◽  
Author(s):  
Richard Wessels ◽  
Thijmen Kok ◽  
Hans van Melick ◽  
Martyn Drury

<p>Publishing research data in a Findable, Accessible, Interoperable, and Reusable (FAIR) manner is increasingly valued and nowadays often required by publishers and funders. Because experimental research data provide the backbone for scientific publications, it is important to publish this data as FAIRly as possible to enable reuse and citation of the data, thereby increasing the impact of research.</p><p>The structural geology group at Utrecht University is collaborating with the EarthCube-funded StraboSpot initiative to develop (meta)data schemas, templates and workflows, to support researchers in collecting and publishing petrological and microstructural data. This data will be made available in a FAIR manner through the EPOS (European Plate Observing System) data publication chain <span xml:lang="EN-GB"><span>(https://epos-msl.uu.nl/</span></span><span xml:lang="EN-GB"><span>)</span></span><span xml:lang="EN-GB"><span>.</span></span></p><p>The data workflow under development currently includes: a) collecting structural field (meta)data compliant with the StraboSpot protocols, b) creating thin sections oriented in three dimensions by applying a notch system (Tikoff et al., 2019), c) scanning and digitizing thin sections using a high-resolution scanner, d) automated mineralogy through EDS on a SEM, and e) high-resolution geochemistry using a microprobe. The purpose of this workflow is to be able to track geochemical and structural measurements and observations throughout the analytical process.</p><p>This workflow is applied to samples from the Cap de Creus region in northeast Spain. Located in the axial zone of the Pyrenees, the pre-Cambrian metasediments underwent HT-LP greenschist- to amphibolite-facies metamorphism, are intruded by pegmatitic bodies, and transected by greenschist-facies shear zones. Cap de Creus is a natural laboratory for studying the deformation history of the Pyrenees, and samples from the region are ideal to test and refine the data workflow. In particular, the geochemical data collected under this workflow is used as input for modelling the bulk rock composition using Perple_X.    </p><p>In the near future the workflow will be complimented by adding unique identifiers to the collected samples using IGSN (International Geo Sample Number), and by incorporating a StraboSpot-developed application for microscopy-based image correlation. This workflow will be refined and included in the broader correlative microscopy workflow that will be applied in the upcoming EXCITE project, an H2020-funded European collaboration of electron and x-ray microscopy facilities and researchers aimed at structural and chemical imaging of earth materials. </p>


2021 ◽  
Author(s):  
Carolyn Tewksbury-Christle ◽  
Alissa Kotowski ◽  
Whitney Behr

<p>The strength, or viscosity, of the subduction interface is a key parameter in subduction dynamics, influencing both long-term subduction plate speeds and short-term transient deformation styles. Fossil subduction interfaces exhumed from downdip of the megathrust record ductile deformation accommodated by diverse lithologies, including metasedimentary and metamafic rocks. Existing flow laws for quartz-rich rocks predict relatively low viscosities, in contrast to high viscosities predicted for basalt and eclogite, but the rheological properties of blueschists representative of metamorphosed oceanic crust of the down-going slab are poorly constrained. Two key questions remain: 1) are there significant viscosity contrasts between blueschists and quartz- or mica-rich metasedimentary rocks, and 2) what are the microscale mechanisms for creep in naturally deformed blueschists and how do they vary with pressure and temperature? To address these questions, we characterized deformation in natural samples from the Condrey Mountain Schist (CMS) in northern California, USA, and the Cycladic Blueschist Unit (CBU) on Syros Island, Cyclades, Greece, using outcrop-scale structural observations, optical microscopy, and Electron Backscatter Diffraction. The CMS and CBU record pressure-temperature conditions of 0.8-1.1 GPa, 350-450°C and 1.4-1.8 GPa, 450-550°C, respectively. </p><p>In the field, blueschists form m- to km-scale lenses that are interfolded with quartz schists, ultramafics, and, in the CBU, eclogites and marbles. At the outcrop scale in both localities, quartz-rich schists and blueschists each exhibit strong foliations and lineations and planar contacts at lithological boundaries. At the thin section scale, the prograde foliation and mineral lineation in blueschists are commonly defined by Na-amphiboles elongated in the lineation direction. Crystallographic preferred orientations in Na-amphibole in all samples have c-axes parallel to lineation and a-axes predominantly defining point-maxima perpendicular to the foliation, suggesting some component of dislocation activity for all temperature conditions in our sample suite. Microtextures in lower temperature CMS samples suggest strain accommodation primarily by dislocation glide and kinking in Na-amphibole, with extremely high-aspect-ratio grains and limited evidence for climb-controlled dynamic recrystallization. Some higher temperature CBU samples show large porphyroclasts with apparent ‘core-and-mantle’-type recrystallization textures and subgrain orientation analyses consistent with the (hk0)[001] slip systems. In contrast, epidote grains accommodate less strain than Na-amphibole, via some combination of rigid rotation, brittle boudinage, and minor intracrystalline plasticity.</p><p>Observations of evenly-distributed strain, despite lithological heterogeneity, suggest low viscosity contrasts and comparable bulk strengths of quartz schists and blueschists. Our microstructural observations suggest that Na-amphibole was the weakest phase and accommodated the majority of strain in mafic blueschists. Dislocation activity, and not just rigid-body-rotation or diffusional processes, accommodated some component of strain and possibly transitioned with increasing temperature from glide- to climb-controlled. Although effective viscosities appear to be similar, subduction interface shear zones dominated by blueschists may exhibit a power-law rheology consistent with dislocation activity, in contrast to the common inference of Newtonian creep in metasediments. Complementary experimental work on CMS and CBU rocks will also be presented at this meeting (see Tokle et al. and Hufford et al.).</p>


1993 ◽  
Vol 57 (386) ◽  
pp. 55-66 ◽  
Author(s):  
D. Brown ◽  
K. R. McClay

AbstractThe Vangorda Pb-Zn-Ag orebody is a 7.1 M tonne, polydeformed stratiform massive sulphide deposit in the Anvil mining district, Yukon, Canada. Five sulphide lithofacies have been identified within the desposit with a typical mineralogy of pyrite, sphalerite, galena, and barite. Pyrrhotite-sphaleritemagnetite assembalges are locally developed. Etched polished sections of massive pyrite ores display relict primary depositional pyrite textures such as colloform growth zoning and spheroidal/framboidal features. A wide variety of brittle deformation, ductile deformation, and annealing textures have been identified. Brittle deformation textures include thin zones of intense cataclasis, grain indentation and axial cracking, and grain boundary sliding features. Ductile deformation textures include strong preferred grain shape orientations, dislocation textures, grain boundary migration, dynamic recrystallisation and pressure solution textures. Post deformational annealing has produced grain growth with lobate grain boundaries, 120° triple junctions and idioblastic pyrite porphyroblasts. The distribution of deformation textures within the Vangorda orebody suggests strong strain partitioning along fold limbs and fault/shear zones, it is postulated that focussed fluid flow in these zones had significant effects on the deformation of these pyritic ores.


Sign in / Sign up

Export Citation Format

Share Document