Value added? Comparative estimates of peat basin volumetrics using borehole methods and 3D ground-penetrating radar

Author(s):  
Luis Rees-Hughes ◽  
Natasha Barlow ◽  
Adam Booth ◽  
Jared West ◽  
Tim Grossey ◽  
...  

<p>Peatlands have long been recognized as providing a wide range of ecosystem services valuable to humans. In recent decades their role in the global climate and particularly their importance in long-term carbon sequestration has come into focus. Peatlands and peat basins are an important carbon store globally, and are estimated to cover nearly 25% of the Scottish landscape: they constitute a significant carbon stock, but being able to accurately estimate the volume of peat stored in coastal basins, both locally and regionally, remains a time-consuming process. Traditional methods of investigating peat depth and volume involved the measurement of peat to depth of contact with a mineral horizon, such as sand. This process is conducted with a peat depth probe or corer, with the spatial density of measurements varying significantly with basin size. Volumetric assessments based on such measurements therefore require interpolation between control points, leading to unquantifiable errors particularly if the base of peat has significant and unrecorded topography. Geophysical methods, in particular the 3D application of ground-penetrating (GPR), offer a promising solution to improve the accuracy in basin volumetrics.</p><p>In this paper, a 3D dataset of 100 MHz GPR data was acquired with a Mala Geosciences Rough Terrain system over a buried Holocene coastal environment near Arisaig, northwest Scotland. 3D surveying involves the acquisition of a suite of parallel GPR profiles, with a small profile separation to capture the full variability of subsurface structure. For this site, a profile was acquired every 0.5 m, over an area of 62 x 32 m.  The site is also sampled by 39 boreholes, which record the base of peat between 1-3.2 m depth and indicate a peat volume of 3720 m<sup>3</sup>. By revealing the true topography of the base of the basin, the GPR data suggest that the borehole-derived volume is overestimated by almost 50%, and instead predict a basin volume of 2529 ± 200 m<sup>3</sup>. Of this, 2064 ± 200 m<sup>3 </sup>is classified as organic peat (81.6%) and the remaining 465 ± 200 m<sup>3 </sup>is marine clay (18.4%).  The principal source of error in this estimate is in the constraint of the GPR velocity, required to convert the time-axis of the GPR dataset to depth. This was measured at 0.034 m/ns ± 8%.</p><p>The acquisition of 3D GPR data is nonetheless time-consuming and requires precise positional control to locate the GPR antennas and avoid misinterpretation. Nonetheless, sufficient topographic information is captured even if the acquisition had recorded only every 5<sup>th</sup> GPR profile: for this downsampled dataset, the estimated basin volume is 2490 m<sup>3 </sup>± 200 m<sup>3</sup> (a difference of only 2.5% from the full 3D dataset). 3D survey methods, therefore, give confidence to a volumetric estimate, but the need for full-resolution 3D sampling can likely be relaxed. However, GPR surveys reveal subsurface variability that would be difficult to reconstruct from a sparse set of borehole observations. Nonetheless, some amount of borehole control is invaluable for validating the GPR data and providing ground-truth control of subsurface structure.</p>

2001 ◽  
Vol 35 (3) ◽  
pp. 14-17
Author(s):  
Evelyn Fields

NOAA's Office of Marine and Aviation Operations (OMAO) provides centralized management of NOAA's fleet of15 vessels that support a wide range of operational and research missions. NOAA's ship requirements are being met with a mix of commercial charters, contracts for data, the UNOLS academic fleet and NOAA vessels. In 2000, OMAO developed its five-year strategic plan in direct support of the NOAA strategic plan. The primary focus of the OMAO strategic plan is to provide the best value in safe, high-quality ship and aircraft operations and scientific support to NOAA and the nation. Having efficient and effective ocean platforms that collect atmospheric and oceanographic data, which can ground truth (or validate) other data platforms, is still paramount to NOAA and the scientific community. As NOAA continues its critical research on the coupling of the atmosphere and ocean that drives global climate, as well as protecting and managing marine environments, its fleet will playa vital role in supporting these efforts.


2018 ◽  
Vol 28 (5) ◽  
pp. 1681-1684
Author(s):  
Georgi Toskov ◽  
Ana Yaneva ◽  
Stanko Stankov ◽  
Hafize Fidan

The European Commission defines the bioeconomy as "the production of renewable biological resources and the conversion of these resources and waste streams into value added products, such as food, feed, bio-based products and bioenergy. Its sectors and industries have strong innovation potential due to their use of a wide range of sciences, enabling and industrial technologies, along with local and implied knowledge." The Bulgarian food industry faces a lot of challenges on the local and national level, which have direct influence on the structure of the production companies. Most of the enterprises from the food sector produce under foreign brands in order to be flexible partners to the large Bulgarian retail chains. The small companies from the food sector are not able to develop as an independent competitive producer on the territory of their local markets. This kind of companies rarely has a working strategy for positioning on new markets. In order to consolidate their already built positions for long period of time, the producers are trying to optimize their operations in a short term. However, the unclear vision of the companies for the business segment does not allow them to fully develop. Tourism in Bulgaria is a significant contributor to the country's economy.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 885
Author(s):  
Pooja Tripathi ◽  
Sangita Subedi ◽  
Abdul Latif Khan ◽  
Yong-Suk Chung ◽  
Yoonha Kim

Roots play an essential function in the plant life cycle, as they utilize water and essential nutrients to promote growth and plant productivity. In particular, root morphology characteristics (such as length, diameter, hairs, and lateral growth) and the architecture of the root system (spatial configuration in soil, shape, and structure) are the key elements that ensure growth and a fine-tuned response to stressful conditions. Silicon (Si) is a ubiquitous element in soil, and it can affect a wide range of physiological processes occurring in the rhizosphere of various crop species. Studies have shown that Si significantly and positively enhances root morphological traits, including root length in rice, soybean, barley, sorghum, mustard, alfalfa, ginseng, and wheat. The analysis of these morphological traits using conventional methods is particularly challenging. Currently, image analysis methods based on advanced machine learning technologies allowed researchers to screen numerous samples at the same time considering multiple features, and to investigate root functions after the application of Si. These methods include root scanning, endoscopy, two-dimensional, and three-dimensional imaging, which can measure Si uptake, translocation and root morphological traits. Small variations in root morphology and architecture can reveal different positive impacts of Si on the root system of crops, with or without exposure to stressful environmental conditions. This review comprehensively illustrates the influences of Si on root morphology and root architecture in various crop species. Furthermore, it includes recommendations in regard to advanced methods and strategies to be employed to maintain sustainable plant growth rates and crop production in the currently predicted global climate change scenarios.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1058
Author(s):  
Hikaru Okubo ◽  
Haruka Kaneyasu ◽  
Tetsuya Kimura ◽  
Patchiya Phanthong ◽  
Shigeru Yao

Each year, increasing amounts of plastic waste are generated, causing environmental pollution and resource loss. Recycling is a solution, but recycled plastics often have inferior mechanical properties to virgin plastics. However, studies have shown that holding polymers in the melt state before extrusion can restore the mechanical properties; thus, we propose a twin-screw extruder with a molten resin reservoir (MSR), a cavity between the screw zone and twin-screw extruder discharge, which retains molten polymer after mixing in the twin-screw zone, thus influencing the polymer properties. Re-extruded recycled polyethylene (RPE) pellets were produced, and the tensile properties and microstructure of virgin polyethylene (PE), unextruded RPE, and re-extruded RPE moldings prepared with and without the MSR were evaluated. Crucially, the elongation at break of the MSR-extruded RPE molding was seven times higher than that of the original RPE molding, and the Young’s modulus of the MSR-extruded RPE molding was comparable to that of the virgin PE molding. Both the MSR-extruded RPE and virgin PE moldings contained similar striped lamellae. Thus, MSR re-extrusion improved the mechanical performance of recycled polymers by optimizing the microstructure. The use of MSRs will facilitate the reuse of waste plastics as value-added materials having a wide range of industrial applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sakthi Kumar Arul Prakash ◽  
Conrad Tucker

AbstractThis work investigates the ability to classify misinformation in online social media networks in a manner that avoids the need for ground truth labels. Rather than approach the classification problem as a task for humans or machine learning algorithms, this work leverages user–user and user–media (i.e.,media likes) interactions to infer the type of information (fake vs. authentic) being spread, without needing to know the actual details of the information itself. To study the inception and evolution of user–user and user–media interactions over time, we create an experimental platform that mimics the functionality of real-world social media networks. We develop a graphical model that considers the evolution of this network topology to model the uncertainty (entropy) propagation when fake and authentic media disseminates across the network. The creation of a real-world social media network enables a wide range of hypotheses to be tested pertaining to users, their interactions with other users, and with media content. The discovery that the entropy of user–user and user–media interactions approximate fake and authentic media likes, enables us to classify fake media in an unsupervised learning manner.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 60
Author(s):  
Viacheslav Glinskikh ◽  
Oleg Nechaev ◽  
Igor Mikhaylov ◽  
Kirill Danilovskiy ◽  
Vladimir Olenchenko

This paper is dedicated to the topical problem of examining permafrost’s state and the processes of its geocryological changes by means of geophysical methods. To monitor the cryolithozone, we proposed and scientifically substantiated a new technique of pulsed electromagnetic cross-well sounding. Based on the vector finite-element method, we created a mathematical model of the cross-well sounding process with a pulsed source in a three-dimensional spatially heterogeneous medium. A high-performance parallel computing algorithm was developed and verified. Through realistic geoelectric models of permafrost with a talik under a highway, constructed following the results of electrotomography field data interpretation, we numerically simulated the pulsed sounding on the computing resources of the Siberian Supercomputer Center of SB RAS. The simulation results suggest the proposed system of pulsed electromagnetic cross-well monitoring to be characterized by a high sensitivity to the presence and dimensions of the talik. The devised approach can be oriented to addressing a wide range of issues related to monitoring permafrost rocks under civil and industrial facilities, buildings, and constructions.


2014 ◽  
Vol 660 ◽  
pp. 971-975 ◽  
Author(s):  
Mohd Norzaim bin Che Ani ◽  
Siti Aisyah Binti Abdul Hamid

Time study is the process of observation which concerned with the determination of the amount of time required to perform a unit of work involves of internal, external and machine time elements. Originally, time study was first starting to be used in Europe since 1760s in manufacturing fields. It is the flexible technique in lean manufacturing and suitable for a wide range of situations. Time study approach that enable of reducing or minimizing ‘non-value added activities’ in the process cycle time which contribute to bottleneck time. The impact on improving process cycle time for organization that it was increasing the productivity and reduce cost. This project paper focusing on time study at selected processes with bottleneck time and identify the possible root cause which was contribute to high time required to perform a unit of work.


Geophysics ◽  
1986 ◽  
Vol 51 (1) ◽  
pp. 12-19 ◽  
Author(s):  
James F. Mitchell ◽  
Richard J. Bolander

Subsurface structure can be mapped using refraction information from marine multichannel seismic data. The method uses velocities and thicknesses of shallow sedimentary rock layers computed from refraction first arrivals recorded along the streamer. A two‐step exploration scheme is described which can be set up on a personal computer and used routinely in any office. It is straightforward and requires only a basic understanding of refraction principles. Two case histories from offshore Peru exploration demonstrate the scheme. The basic scheme is: step (1) shallow sedimentary rock velocities are computed and mapped over an area. Step (2) structure is interpreted from the contoured velocity patterns. Structural highs, for instance, exhibit relatively high velocities, “retained” by buried, compacted, sedimentary rocks that are uplifted to the near‐surface. This method requires that subsurface structure be relatively shallow because the refracted waves probe to depths of one hundred to over one thousand meters, depending upon the seismic energy source, streamer length, and the subsurface velocity distribution. With this one requirement met, we used the refraction method over a wide range of sedimentary rock velocities, water depths, and seismic survey types. The method is particularly valuable because it works well in areas with poor seismic reflection data.


Geophysics ◽  
2005 ◽  
Vol 70 (5) ◽  
pp. K39-K42 ◽  
Author(s):  
James D. Irving ◽  
Rosemary J. Knight

To obtain tomographic images with the highest possible resolution from crosshole ground-penetrating radar (GPR) data, raypaths covering a wide range of angles between the boreholes are required. In practice, however, the inclusion of high-angle ray data in crosshole GPR inversions often leads to tomograms so dominated by inversion artifacts that they contain little reliable subsurface information. Here, we investigate the problems that arise from the standard assumption that all first-arriving energy travels directly between the centers of the antennas. Through numerical modeling, we show that this assumption is often incorrect at high transmitter-receiver angles and can lead to significant errors in tomographic velocity estimates when the antenna length is a significant fraction of the borehole spacing.


2013 ◽  
Vol 117 (1197) ◽  
pp. 1075-1101 ◽  
Author(s):  
S. M. Parkes ◽  
I. Martin ◽  
M. N. Dunstan ◽  
N. Rowell ◽  
O. Dubois-Matra ◽  
...  

Abstract The use of machine vision to guide robotic spacecraft is being considered for a wide range of missions, such as planetary approach and landing, asteroid and small body sampling operations and in-orbit rendezvous and docking. Numerical simulation plays an essential role in the development and testing of such systems, which in the context of vision-guidance means that realistic sequences of navigation images are required, together with knowledge of the ground-truth camera motion. Computer generated imagery (CGI) offers a variety of benefits over real images, such as availability, cost, flexibility and knowledge of the ground truth camera motion to high precision. However, standard CGI methods developed for terrestrial applications lack the realism, fidelity and performance required for engineering simulations. In this paper, we present the results of our ongoing work to develop a suitable CGI-based test environment for spacecraft vision guidance systems. We focus on the various issues involved with image simulation, including the selection of standard CGI techniques and the adaptations required for use in space applications. We also describe our approach to integration with high-fidelity end-to-end mission simulators, and summarise a variety of European Space Agency research and development projects that used our test environment.


Sign in / Sign up

Export Citation Format

Share Document