scholarly journals Effects of coupling a stochastic convective parameterization with the Zhang–McFarlane scheme on precipitation simulation in the DOE E3SMv1.0 atmosphere model

2021 ◽  
Vol 14 (3) ◽  
pp. 1575-1593
Author(s):  
Yong Wang ◽  
Guang J. Zhang ◽  
Shaocheng Xie ◽  
Wuyin Lin ◽  
George C. Craig ◽  
...  

Abstract. A stochastic deep convection parameterization is implemented into the US Department of Energy (DOE) Energy Exascale Earth System Model (E3SM) Atmosphere Model version 1.0 (EAMv1). This study evaluates its performance in simulating precipitation. Compared to the default model, the probability distribution function (PDF) of rainfall intensity in the new simulation is greatly improved. The well-known problem of “too much light rain and too little heavy rain” is alleviated, especially over the tropics. As a result, the contribution from different rain rates to the total precipitation amount is shifted toward heavier rain. The less frequent occurrence of convection contributes to suppressed light rain, while more intense large-scale and convective precipitation contributes to enhanced heavy total rain. The synoptic and intraseasonal variabilities of precipitation are enhanced as well to be closer to observations. The sensitivity of the rainfall intensity PDF to the model vertical resolution is examined. The relationship between precipitation and dilute convective available potential energy in the stochastic simulation agrees better with that in the Atmospheric Radiation Measurement (ARM) observations compared with the standard model simulation. The annual mean precipitation is largely unchanged with the use of the stochastic scheme except over the tropical western Pacific, where a moderate increase in precipitation represents a slight improvement. The responses of precipitation and its extremes to climate warming are similar with or without the stochastic deep convection scheme.

2020 ◽  
Author(s):  
Yong Wang ◽  
Guang J. Zhang ◽  
Shaocheng Xie ◽  
Wuyin Lin ◽  
George C. Craig ◽  
...  

Abstract. A stochastic deep convection parameterization is implemented into the U.S. Department of Energy (DOE) Energy Exascale Earth System Model (E3SM) Atmosphere Model version 1 (EAMv1). This study evaluates its performance on the precipitation simulation. Compared to the default model, the probability distribution function (PDF) of rainfall intensity in the new simulation is greatly improved. Especially, the well-known problem of too much light rain and too little heavy rain is alleviated over the tropics. As a result, the contribution from different rain rates to the total precipitation amount is shifted toward heavier rain. The less frequent occurrence of convection contributes to the suppressed light rain, while both more intense large-scale and convective precipitation contribute to the enhanced heavy total rain. The synoptic and intraseasonal variabilities of precipitation are enhanced as well to be closer to observations. A sensitivity of the rainfall intensity PDF to the model vertical resolution is identified and explained in terms of the relationships between convective precipitation and convective available potential energy (CAPE) and between large-scale precipitation and resolved-scale upward moisture flux. The annual mean precipitation is largely unchanged with the use of the stochastic scheme except over the tropical western Pacific, where a moderate increase in precipitation represents a slight improvement. The responses of precipitation and its extremes to climate warming are similar with or without the stochastic deep convection scheme.


2014 ◽  
Vol 71 (11) ◽  
pp. 3902-3930 ◽  
Author(s):  
Sungsu Park

Abstract The author develops a unified convection scheme (UNICON) that parameterizes relative (i.e., with respect to the grid-mean vertical flow) subgrid vertical transport by nonlocal asymmetric turbulent eddies. UNICON is a process-based model of subgrid convective plumes and mesoscale organized flow without relying on any quasi-equilibrium assumptions such as convective available potential energy (CAPE) or convective inhibition (CIN) closures. In combination with a relative subgrid vertical transport scheme by local symmetric turbulent eddies and a grid-scale advection scheme, UNICON simulates vertical transport of water species and conservative scalars without double counting at any horizontal resolution. UNICON simulates all dry–moist, forced–free, and shallow–deep convection within a single framework in a seamless, consistent, and unified way. It diagnoses the vertical profiles of the macrophysics (fractional area, plume radius, and number density) as well as the microphysics (production and evaporation rates of convective precipitation) and the dynamics (mass flux and vertical velocity) of multiple convective updraft and downdraft plumes. UNICON also prognoses subgrid cold pool and mesoscale organized flow within the planetary boundary layer (PBL) that is forced by evaporation of convective precipitation and accompanying convective downdrafts but damped by surface flux and entrainment at the PBL top. The combined subgrid parameterization of diagnostic convective updraft and downdraft plumes, prognostic subgrid mesoscale organized flow, and the feedback among them remedies the weakness of conventional quasi-steady diagnostic plume models—the lack of plume memory across the time step—allowing UNICON to successfully simulate various transitional phenomena associated with convection (e.g., the diurnal cycle of precipitation and the Madden–Julian oscillation).


2017 ◽  
Vol 14 ◽  
pp. 231-239 ◽  
Author(s):  
Taru Olsson ◽  
Tuuli Perttula ◽  
Kirsti Jylhä ◽  
Anna Luomaranta

Abstract. A new national daily snowfall record was measured in Finland on 8 January 2016 when it snowed 73 cm (31 mm as liquid water) in less than a day in Merikarvia on the western coast of Finland. The area of the most intense snowfall was very small, which is common in convective precipitation. In this work we used hourly weather radar images to identify the sea-effect snowfall case and to qualitatively estimate the performance of HARMONIE, a non-hydrostatic convection-permitting weather prediction model, in simulating the spatial and temporal evolution of the snowbands. The model simulation, including data assimilation, was run at 2.5 km horizontal resolution and 65 levels in vertical. HARMONIE was found to capture the overall sea-effect snowfall situation quite well, as both the timing and the location of the most intense snowstorm were properly simulated. Based on our preliminary analysis, the snowband case was triggered by atmospheric instability above the mostly ice-free sea and a low-level convergence zone almost perpendicular to the coastline. The simulated convective available potential energy (CAPE) reached a value of 87 J kg−1 near the site of the observed snowfall record.


Author(s):  
T. Connor Nelson ◽  
James Marquis ◽  
Adam Varble ◽  
Katja Friedrich

AbstractThe Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) and Cloud, Aerosol, and Complex Terrain Interactions (CACTI) projects deployed a high-spatiotemporal-resolution radiosonde network to examine environments supporting deep convection in the complex terrain of central Argentina. This study aims to characterize atmospheric profiles most representative of the near-cloud environment (in time and space) to identify the mesoscale ingredients affecting storm initiation and growth. Spatiotemporal autocorrelation analysis of the soundings reveals that there is considerable environmental heterogeneity, with boundary layer thermodynamic and kinematic fields becoming statistically uncorrelated on scales of 1–2 hr and 30 km. Using this as guidance, we examine a variety of environmental parameters derived from soundings collected within close proximity (30 km and 30 min in space and time) of 44 events over 9 days where the atmosphere either: 1) supported the initiation of sustained precipitating convection, 2) yielded weak and short-lived precipitating convection, or 3) produced no precipitating convection in disagreement with numerical forecasts from convection-allowing models (i.e., Null events). There are large statistical differences between the Null event environments and those supporting any convective precipitation. Null event profiles contained larger convective available potential energy, but had low free tropospheric relative humidity, higher freezing levels, and evidence of limited horizontal convergence near the terrain at low levels that likely suppressed deep convective growth. We also present evidence from the radiosonde and satellite measurements that flow-terrain interactions may yield gravity wave activity that affects CI outcome.


2008 ◽  
Vol 21 (15) ◽  
pp. 3617-3641 ◽  
Author(s):  
Andrew M. Carleton ◽  
David J. Travis ◽  
Jimmy O. Adegoke ◽  
David L. Arnold ◽  
Steve Curran

Abstract In Part I of this observational study inquiring into the relative influences of “top down” synoptic atmospheric conditions and “bottom up” land surface mesoscale conditions in deep convection for the humid lowlands of the Midwest U.S. Central Corn Belt (CCB), the composite atmospheric environments for afternoon and evening periods of convection (CV) versus no convection (NC) were determined for two recent summers (1999 and 2000) having contrasting precipitation patterns and amounts. A close spatial correspondence was noted between composite synoptic features representing baroclinity and upward vertical motion with the observed precipitation on CV days when the “background” (i.e., free atmosphere) wind speed exceeded approximately 10 m s−1 at 500 hPa (i.e., “stronger flow”). However, on CV days when wind speeds were <∼10 m s−1 (i.e., “weaker flow”), areas of increased precipitation can be associated with synoptic composites that are not so different from those for corresponding NC days. From these observations, the presence of a land surface mesoscale influence on deep convection and precipitation is inferred that is better expressed on weaker flow days. Climatically, a likely candidate for enhancing low-level moisture convergence to promote deep convection are the quasi-permanent vegetation boundaries (QPVBs) between the two major land use and land cover (LULC) types of crop and forest that characterize much of the CCB. Accordingly, in this paper the role of these boundaries on summer precipitation variations for the CCB is extracted in two complementary ways: 1) for contrasting flow day types in the summers 1999 and 2000, by determining the spatially and temporally aggregated land surface influence on deep convection from composites of thermodynamic variables [e.g., surface lifted index (SLI), level of free convection (LFC), and lifted condensation level (LCL)] that are obtained from mapped data of the 6-h NCEP–NCAR reanalyses (NNR), and 0000 UTC rawinsonde ascents; and 2) for summer seasons 1995–2001, from the statistical associations of satellite-retrieved LULC boundary attributes (i.e., length and width) and precipitation at high spatial resolutions. For the 1999 and 2000 summers (item 1 above), thermodynamic composites determined for V(500) categories having minimal differences in synoptic meteorological fields on CV minus NC (CV − NC) days (i.e., weaker flow), show statistically significant increases in atmospheric moisture (e.g., greater precipitable water; lower LCL and LFC) and static instability [e.g., positive convective available potential energy (CAPE)] compared to NC days. Moreover, CV days for both weaker and stronger background flow have associated subregional-scale thermodynamic patterns indicating free convection at the earth’s surface, supported by a synoptic pattern of at least weakly upward motion of air in the midtroposphere in contrast to NC days. The possibility that aerodynamic contrasts along QPVBs readily permit air to be lofted above the LFC when the lower atmosphere is moist, thereby assisting or enhancing deep convection on CV days, is supported by the multiyear analysis (item 2 above). In early summer when LULC boundaries are most evident, precipitation on weaker flow days is significantly greater within 20 km of boundaries than farther away, but there is no statistical difference on stronger flow days. Statistical relationships between boundary mean attributes and mean precipitation change sign between early summer (positive) and late summer (negative), in accord with shifts in the satellite-retrieved maximum radiances from forest to crop areas. These phenological changes appear related, primarily, to contrasting soil moisture and implied evapotranspiration differences. Incorporating LULC boundary locations and phenological status into reliable forecast fields of lower-to-midtropospheric humidity and wind speed should lead to improved short-term predictions of convective precipitation in the Corn Belt and also, potentially, better climate seasonal forecasts.


2020 ◽  
Author(s):  
René M. van Westen ◽  
Henk A. Dijkstra

Abstract. In 2016 and 2017, an open-ocean polynya appeared over Maud Rise. The formation of these polynyas has been attributed to the occurrence of intense winter storms. However, the evolution and lifetime of the two polynyas was quite different. Here, we use model output of a century long high-resolution climate model simulation to explain the differences between the 2016 and 2017 Maud Rise polynyas. Analysis of the results, using convective available potential energy to measure subsurface convection, leads us to the interpretation that the first polynya event is (partly) initiated by subsurface static instabilities, leading to subsurface convection. Subsurface convection associated with the formation of the 2016 polynya preconditioned the Maud Rise region, resulting in a weakly stable surface layer and eventually leading to the 2017 polynya event. Based on this, we argue that, apart from atmospheric variability, subsurface convection is important to initiate a Maud Rise polynya.


2006 ◽  
Vol 63 (4) ◽  
pp. 1308-1323 ◽  
Author(s):  
Boualem Khouider ◽  
Andrew J. Majda

Abstract Recent observational analysis reveals the central role of three multicloud types, congestus, stratiform, and deep convective cumulus clouds, in the dynamics of large-scale convectively coupled Kelvin waves, westward-propagating two-day waves, and the Madden–Julian oscillation. A systematic model convective parameterization highlighting the dynamic role of the three cloud types is developed here through two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with low-level heating and cooling corresponding respectively to congestus and stratiform clouds. A systematic moisture equation is developed where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep convective precipitation. A nonlinear switch is developed that favors either deep or congestus convection depending on the relative dryness of the troposphere; in particular, a dry troposphere with large convective available potential energy (CAPE) has no deep convection and only congestus clouds. The properties of the multicloud model parameterization are tested by linearized analysis in a two-dimensional setup with no rotation with constant sea surface temperature. In particular, the present study reveals new mechanisms for the large-scale instability of moist gravity waves with features resembling observed convectively coupled Kelvin waves in realistic parameter regimes without any effect of wind-induced surface heat exchange (WISHE). A detailed dynamical analysis for the linear waves is given herein and idealized nonlinear numerical simulations are reported in a companion paper. A maximum congestus heating leads during the dry phase of the wave. It is followed by an increase of the boundary layer θe, that is, CAPE, and lower troposphere moistening that precondition the upper troposphere for the next deep convective episode. In turn, deep convection consumes CAPE and removes moisture, thus yielding the dry episode.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2020 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Mohammed T. Mahmoud ◽  
Safa A. Mohammed ◽  
Mohamed A. Hamouda ◽  
Mohamed M. Mohamed

The influence of topographical characteristics and rainfall intensity on the accuracy of satellite precipitation estimates is of importance to the adoption of satellite data for hydrological applications. This study evaluates the three GPM IMERG V05B products over the arid country of Saudi Arabia. Statistical indices quantifying the performance of IMERG products were calculated under three evaluation techniques: seasonal-based, topographical, and rainfall intensity-based. Results indicated that IMERG products have the capability to detect seasons with the highest precipitation values (spring) and seasons with the lowest precipitation (summer). Moreover, results showed that IMERG products performed well under various rainfall intensities, particularly under light rain, which is the most common rainfall in arid regions. Furthermore, IMERG products exhibited high detection accuracy over moderate elevations, whereas it had poor performance over coastal and mountainous regions. Overall, the results confirmed that the performance of the final-run product surpassed the near-real-time products in terms of consistency and errors. IMERG products can improve temporal resolution and play a significant role in filling data gaps in poorly gauged regions. However, due to the errors in IMERG products, it is recommended to use sub-daily rain gauge data in satellite calibration for better rainfall estimation over arid and semiarid regions.


2016 ◽  
Vol 46 (4) ◽  
pp. 1097-1115 ◽  
Author(s):  
Zhan Su ◽  
Andrew P. Ingersoll ◽  
Andrew L. Stewart ◽  
Andrew F. Thompson

AbstractThe energetics of thermobaricity- and cabbeling-powered deep convection occurring in oceans with cold freshwater overlying warm salty water are investigated here. These quasi-two-layer profiles are widely observed in wintertime polar oceans. The key diagnostic is the ocean convective available potential energy (OCAPE), a concept introduced in a companion piece to this paper (Part I). For an isolated ocean column, OCAPE arises from thermobaricity and is the maximum potential energy (PE) that can be converted into kinetic energy (KE) under adiabatic vertical parcel rearrangements. This study explores the KE budget of convection using two-dimensional numerical simulations and analytical estimates. The authors find that OCAPE is a principal source for KE. However, the complete conversion of OCAPE to KE is inhibited by diabatic processes. Further, this study finds that diabatic processes produce three other distinct contributions to the KE budget: (i) a sink of KE due to the reduction of stratification by vertical mixing, which raises water column’s center of mass and thus acts to convert KE to PE; (ii) a source of KE due to cabbeling-induced shrinking of the water column’s volume when water masses with different temperatures are mixed, which lowers the water column’s center of mass and thus acts to convert PE into KE; and (iii) a reduced production of KE due to diabatic energy conversion of the KE convertible part of the PE to the KE inconvertible part of the PE. Under some simplifying assumptions, the authors also propose a theory to estimate the maximum depth of convection from an energetic perspective. This study provides a potential basis for improving the convection parameterization in ocean models.


Sign in / Sign up

Export Citation Format

Share Document