scholarly journals ANTIMICROBIAL SUSCEPTIBILITY BEHAVIOR OF BACTERIAL ISOLATES FROM DIFFERENT CLINICAL SAMPLES AT NISHTAR HOSPITAL MULTAN

Author(s):  
Maria Suhail ◽  
Nadia Iqbal ◽  
Khalid Usman ◽  
Farah Deeba

The pathogenic bacteria are getting resistant to antibiotics is significantly growing in the developing countries of the world including Pakistan. The present study was designed to find the basic study on resistance among the patients coming to the Nishtar Hospital, Multan. The study was carried out in the Department of Pathology, Nishtar Hospital, Multan. Total 387 clinical samples of urine, pus, high vaginal swab (HVS) and wound were surveyed for the existence of Gram-positive and Gram-negative pathogens. For these bacterial isolates, antimicrobial susceptibility tests were performed. E. coli was the most prevalent isolates followed by Staphylococcus aureus and Pseudomonas. E. coli was predominated in urine, pus, HVS and wound specimens. Occurance of Staphylococcus aureus, MRSA, Candida and Pseudomonas were 7.9 %, 3.9 %, 14.7 % and 1.4 % respectively among the clinical specimens. E. coli shows highest resistance to Linezolid (98.3%) followed by Ceftrizone (90.8%), Sulfamethoxazole + Trimethoprim (85%), Moxifloxacin (82.5%). High frequency of resistance specifies that there is an unremitting requirement of surveillance of resistance behaviour of antimicrobial agents in our study is to investigate the trend of this problem.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Fanta Gashe ◽  
Eshetu Mulisa ◽  
Mekidim Mekonnen ◽  
Gemechu Zeleke

Background. Drug resistant microorganisms lead to an increase in morbidity and mortality as they boost the risk of inappropriate therapy. Hence, data on antimicrobial resistance help define the best possible treatment for individual patients. Therefore, this study aimed to screen the antimicrobial resistant profile of 3rd generation cephalosporin drugs in Jimma University Specialized Teaching Hospital. Methods. A hospital based prospective cross-sectional study was conducted in Jimma University Specialized Hospital (JUSH) from April to August 2016. The clinical samples such as wound swab, urine, sputum, and stool were collected from hospitalized patients. Then, bacterial species were isolated and identified as per the standard microbiological methods. Antimicrobial susceptibility tests were carried out using various antimicrobial discs by Kirby–Bauer disc diffusion method. Results. Totally, 248 bacterial isolates were obtained from 154 (62.1%) male and 94 (37.9%) female patients. Escherichia coli (25.4%) and Staphylococcus aureus (19.0 %) were the predominant organisms isolated from specimens. About 140 (56.5%) and 149 (60.1%) of the total bacterial isolates were found to be resistant to ceftriaxone and ceftazidime, respectively. The majority of Escherichia coli isolates 46 (73%) were resistant to ceftriaxone and 41 (65%) of them were resistant to ceftazidime. Staphylococcus aureus, which accounted 19% of the total bacterial isolates, showed 23.4% and 34% resistance to ceftriaxone and ceftazidime, respectively. Among the bacterial strains revealing resistant to ceftriazone and ceftazidime, about 109 (44%) and 108 (43.5%) of them were resistant to two, three, or four other drugs, respectively. Conclusion. Bacterial resistance towards third-generation cephalosporin (ceftriaxone and ceftazidime) is escalating as more than half of the isolated strains demonstrated resistance to these drugs. Moreover, these strains also revealed multidrug resistance mainly against clinically used drugs which could render therapy unsuccessful. Therefore, in clinical use appropriate medications should be selected based on the data obtained from antimicrobial susceptibility tests.


Author(s):  
Helen Oroboghae Ogefere ◽  
Samuel E. Iriah ◽  
Ephraim Ehidiamen Ibadin

Background<br />Multi-drug resistant bacterial strains have been increasingly implicated in clinical infections worldwide and beta-lactamase production is one of the commonest mechanisms of resistance in these strains. This study investigated the prevalence of extended spectrum â-lactamase (ESBL)-producing isolates and determined the temoneira (TEM) and sulfhydryl variable (SHV) types implicated in two military hospitals in South-South Nigeria. <br /><br />Methods<br />Three-hundred and eighty (380) consecutive non-duplicate bacterial isolates (Gram negative bacilli) recovered from clinical samples were identified following standard techniques. Antimicrobial susceptibility tests were performed for each isolate following the Clinical Laboratory Standards Institute guidelines. Bacterial isolates recovered which comprised Escherichia coli, Klebsiella spp, Proteus spp and Pseudomonas aeruginosa were screened for ESBL using a phenotypic method (double disc synergy test). All positive isolates were screened for TEM and SHV genes by PCR method. <br /><br />Results<br />Sixty-five isolates (17.1%) were ESBL producing using phenotypic method, E. coli showed the highest ESBL prevalence (24.3%). One isolate was SHV positive (1.5%), 8 (12.3%) were TEM positive while 3 (4.6%) isolates harbored both SHV and TEM genes. Fluoroquinolone - ofloxacin showed marked activity against ESBL-producing isolates (90.8%) while the least active were ceftriaxone (9.2%), ceftazidime (3.1%) and ampicillin (1.5%). <br /><br />Conclusion<br />This study demonstrated that 17.1% of Gram-negative bacilli were ESBL producers. Screening of clinical isolates for ESBL should be implemented. The findings of this study suggest the need for caution in the use of antimicrobial agents in order to curb the incidence of antimicrobial resistance.


2020 ◽  
Author(s):  
Abebe Aseffa Negeri ◽  
Eyasu Tigabu Seyoum ◽  
Dejenie Shiferaw Taklu ◽  
Estifanos Tsige ◽  
Dawit Assefa ◽  
...  

Abstract Background Extended-spectrum beta-lactamases (ESBL) producing Enterobacteriaceae are prevalent worldwide and they are unique challenges for treatment and control of bacterial infectious diseases. ESBL genes not only confer resistance to oximino-cephalosporins and aztreonum but also, they are multidrug-resistant to other commonly available antimicrobial agents used in clinical practice.Objective To determine the prevalence and antimicrobial susceptibility profile of ESBL producing Enterobacteriaceae isolated from clinical samples referred to the national clinical bacteriology and mycology reference laboratory.Materials and Methods A cross-sectional study was conducted on Enterobacteriaceae culture- positive clinical samples that were referred to the national bacteriology and mycology reference laboratory from August 2018 to July 2019. Bacterial isolation was performed according to the inoculation and incubation conditions of each clinical specimen and identifications of the isolates were performed using standardized biochemical tests for gram-negative bacteria. Antimicrobial susceptibility profiles of these cultures were determined using the disk diffusion method on Muller Hinton agar according to the recommendation by Clinical and Laboratory Standard Institute (CLSI). ESBL production was detected using CLSI Screening and confirmation test. A double-disk synergy test was used for confirmation.Results Out of 371 culture positive for Enterobacteriaceae , 240 (64.7%) were positive for ESBL production, and the most prevalent species were Klebsiella sp 131(54.6%) followed by E. coli 79 (32.9%). Of 131 ESBL positive Klebsiella spp, 95 (72.5%) were obtained from blood samples and among 79 E. coli isolates, 51 (64.6%) of the strains were isolated from urine samples. All ESBL positive isolates were resistant to ampicillin and all generation of cephalosporins. In addition, 100% of them were multidrug resistant. There were also high proportions of resistant ESBL positive isolates to other classes of antimicrobial agents. Less resistance rates were documented for carbapenems drugs and amikacin from the class of aminoglycosides.Conclusion ESBL producing Enterobacteriaceae we reported in this study was not only highly prevalent but also they are multidrug resistant to most clinically available antimicrobial agents including carbapenems. Therefore, public awareness and regular monitoring


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1786
Author(s):  
György Schneider ◽  
Bettina Schweitzer ◽  
Anita Steinbach ◽  
Botond Zsombor Pertics ◽  
Alysia Cox ◽  
...  

Contamination of meats and meat products with foodborne pathogenic bacteria raises serious safety issues in the food industry. The antibacterial activities of phosphorous-fluorine co-doped TiO2 nanoparticles (PF-TiO2) were investigated against seven foodborne pathogenic bacteria: Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. PF-TiO2 NPs were synthesized hydrothermally at 250 °C for 1, 3, 6 or 12 h, and then tested at three different concentrations (500 μg/mL, 100 μg/mL, 20 μg/mL) for the inactivation of foodborne bacteria under UVA irradiation, daylight exposure or dark conditions. The antibacterial efficacies were compared after 30 min of exposure to light. Distinct differences in the antibacterial activities of the PF-TiO2 NPs, and the susceptibilities of tested foodborne pathogenic bacterium species were found. PF-TiO2/3 h and PF-TiO2/6 h showed the highest antibacterial activity by decreasing the living bacterial cell number from ~106 by ~5 log (L. monocytogenes), ~4 log (EHEC), ~3 log (Y. enterolcolitca, S. putrefaciens) and ~2.5 log (S. aureus), along with complete eradication of C. jejuni and S. Typhimurium. Efficacy of PF-TiO2/1 h and PF-TiO2/12 h NPs was lower, typically causing a ~2–4 log decrease in colony forming units depending on the tested bacterium while the effect of PF-TiO2/0 h was comparable to P25 TiO2, a commercial TiO2 with high photocatalytic activity. Our results show that PF-co-doping of TiO2 NPs enhanced the antibacterial action against foodborne pathogenic bacteria and are potential candidates for use in the food industry as active surface components, potentially contributing to the production of meats that are safe for consumption.


2001 ◽  
Vol 45 (12) ◽  
pp. 3456-3461 ◽  
Author(s):  
Mervi Tenhami ◽  
Kaisa Hakkila ◽  
Matti Karp

ABSTRACT The spread of antibiotic resistance among pathogenic bacteria is a serious threat to humans and animals. Therefore, unnecessary use should be minimized, and new antimicrobial agents with novel mechanisms of action are needed. We have developed an efficient method for measuring the action of antibiotics which is applied to a gram-positive strain,Staphylococcus aureus RN4220. The method utilizes the firefly luciferase reporter gene coupled to the metal-induciblecadA promoter in a plasmid, pTOO24. Correctly timed induction by micromolar concentrations of antimonite rapidly triggers the luciferase gene transcription and translation. This sensitizes the detection system to the action of antibiotics, and especially for transcriptional and translational inhibitors. We show the results for 11 model antibiotics with the present approach and compare them to an analytical setup with a strain where luciferase expression is under the regulation of a constitutive promoter giving only a report of metabolic inhibition. The measurement of light emission from intact living cells is shown to correlate extremely well (r = 0.99) with the conventional overnight growth inhibition measurement. Four of the antibiotics were within a 20% concentration range and four were within a 60% concentration range of the drugs tested. This approach shortens the assay time needed, and it can be performed in 1 to 4 h, depending on the sensitivity needed. Furthermore, the assay can be automatized for high-throughput screening by the pharmaceutical industry.


2020 ◽  
Vol 15 (2) ◽  
pp. 87-94

In this work, various concentrations of ZnO nano particles, prepared by the coprecipitation method with a size range of 47-68 nm, have been investigated as antimicrobial agents. Dilution antimicrobial susceptibility tests were carried out on two kinds of microbes (Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli) according to the standard method recommended by Clinical and Laboratory Standards Institute, CLSI-2015-M07-A10. The results showed that the antimicrobial effect is larger, the higher the concentration of ZnO nano particles in solution. It was also found that Gram-positive microbes are more sensitive to ZnO nano particles when compared with the Gram-negative ones. The minimum inhibitory concentration (MIC) for E. coli was found to be 50 mg/mL while that for S. aureus was 25 mg/mL. The minimum bactericidal concentration (MBC) was 1600 mg/mL for E. coli and 800 mg/mL for S. aureus.


2014 ◽  
Vol 44 (2) ◽  
pp. 287-290 ◽  
Author(s):  
Carolinie Batista Nobre da Cruz ◽  
Fabio Alessandro Pieri ◽  
Gislene Almeida Carvalho-Zilse ◽  
Patrícia Puccinelli Orlandi ◽  
Carlos Gustavo Nunes-Silva ◽  
...  

Honeys are described possessing different properties including antimicrobial. Many studies have presented this activity of honeys produced by Apis mellifera bees, however studies including activities of stingless bees honeys are scarce. The aim of this study was to compare the antimicrobial activity of honeys collected in the Amazonas State from Melipona compressipes, Melipona seminigra and Apis mellifera against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Chromobacterium violaceum, and Candida albicans. Minimum inhibitory concentrations were determined using the agar dilution method with Müller-Hinton agar (for bacteria) or Saboraud agar (for yeast). Staphylococcus aureus and E. faecalis were inhibited by all honeys at concentrations below 12%, while E. coli and C. violaceum were inhibited by stingless bee honeys at concentrations between 10 and 20%. A. mellifera honey inhibited E. coli at a concentration of 7% and Candida violaceum at 0.7%. C. albicans were inhibited only with honey concentrations between 30 and 40%. All examined honey had antimicrobial activity against the tested pathogens, thus serving as potential antimicrobial agents for several therapeutic approaches.


Author(s):  
Kavi Aniis ◽  
Rajamanikandan Kcp ◽  
Arvind Prasanth D

<p>ABSTRACT<br />Objective: Beta-lactams are the group of antibiotics that contain a ring called as “beta-lactam ring,” which is responsible for the antibacterial activity.<br />The presence of resistance among Gram-negative organisms is due to the production of beta-lactamases enzymes that hydrolysis the beta-lactam ring<br />thereby conferring resistance to the organism. This study is undertaken to determine the prevalence of extended-spectrum beta-lactamase (ESBL)<br />producing Gram-negative organism from clinical samples.<br />Methods: A total of 112 clinical samples were taken for this study. The combined disc synergistic test (CDST) was used for the phenotypic detection<br />of ESBL producers from the clinical samples. The genotypic identification of ESBL producers was carried out by alkaline lysis method by isolation of<br />plasmid DNA.<br />Result: A total of 87 bacterial isolates were isolated and identified. Among them, Klebsiella (41%) was the predominant organism followed by<br />Escherichia coli (33%), Proteus (10%), Pseudomonas (10%), and Serratia (6%). Among the various bacterial isolates, Klebsiella showed a higher<br />percentage of resistance. The CDST showed that 8 isolates of Klebsiella, 3 isolates of E. coli, and 1 isolate of Pseudomonas were found to be ESBL<br />producers. The genotypic confirmation showed that the two bacterial isolates, namely, Klebsiella and E. coli were found to possess temoniera (TEM)<br />gene which was the 400-500 bp conferring resistance to the antibiotics.<br />Conclusion: The results of this study suggest that early detection of ESBL producing Gram-negative organism is a very important step in planning the<br />therapy of patient in Hospitals. CDST continues to be a good indicator in the detection of ESBL producers.<br />Keywords: Beta-lactamases, Gram-negative bacilli, Extended-spectrum beta-lactamase, Resistance, Combined disc synergistic test.</p><p> </p>


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Hend M. Abdulghany ◽  
Rasha M. Khairy

The current study aimed to use Coagulase gene polymorphism to identify methicillin-resistant Staphylococcus aureus (MRSA) subtypes isolated from nasal carriers in Minia governorate, Egypt, evaluate the efficiency of these methods in discriminating variable strains, and compare these subtypes with antibiotypes. A total of 400 specimens were collected from nasal carriers in Minia governorate, Egypt, between March 2012 and April 2013. Fifty-eight strains (14.5%) were isolated and identified by standard microbiological methods as MRSA. The identified isolates were tested by Coagulase gene RFLP typing. Out of 58 MRSA isolates 15 coa types were classified, and the amplification products showed multiple bands (1, 2, 3, 4, 5, and 8 bands). Coagulase gene PCR-RFLPs exhibited 10 patterns that ranged from 1 to 8 fragments with AluI digestion. Antimicrobial susceptibility testing with a panel of 8 antimicrobial agents showed 6 different antibiotypes. Antibiotype 1 was the most common phenotype with 82.7%. The results have demonstrated that many new variants of the coa gene are present in Minia, Egypt, different from those reported in the previous studies. So surveillance of MRSA should be continued.


2019 ◽  
Vol 24 ◽  
pp. 2515690X1988627 ◽  
Author(s):  
Mekonnen Sisay ◽  
Negussie Bussa ◽  
Tigist Gashaw ◽  
Getnet Mengistu

Medicinal plants are targeted in the search for new antimicrobial agents. Nowadays, there is an alarmingly increasing antimicrobial resistance to available agents with a very slow development of new antimicrobials. It is, therefore, necessary to extensively search for new agents based on the traditional use of herbal medicines as potential source. The antibacterial activity of 80% methanol extracts of the leaves of Verbena officinalis (Vo-80ME), Myrtus communis (Mc-80ME), and Melilotus elegans (Me-80ME) was tested against 6 bacterial isolates using agar well diffusion technique. In each extract, 3 concentrations of 10, 20, and 40 mg/well were tested for each bacterium. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were also determined. Vo-80ME and Mc-80ME exhibited promising antibacterial activity against Staphylococcus aureus with the highest zone of inhibition being 18.67 and 26.16 mm, respectively at concentration of 40 mg/well. Regarding gram-negative bacteria, Vo-80ME exhibited an appreciable activity against Escherichia coli and Salmonella typhi. Mc-80ME displayed remarkable activity against all isolates including Pseudomonas aeruginosa with the maximum zone of inhibition being 22.83 mm. Me-80ME exhibited better antibacterial activity against E coli, but its secondary metabolites had little or no activity against other gram-negative isolates. The MIC values of Vo-80ME ranged from 0.16 to 4.00 mg/mL. The lowest MIC was observed in Mc-80ME, with the value being 0.032 mg/mL. Mc-80ME had bactericidal activity against all tested bacterial isolates. Mc-80ME showed remarkable zone of inhibitions in all tested bacterial isolates. Besides, Vo-80ME showed good antibacterial activity against S aureus, E coli, and S typhi. Conversely, Me-80ME has shown good activity against E coli only. Generally, M communis L and V officinalis have good MIC and MBC results.


Sign in / Sign up

Export Citation Format

Share Document