scholarly journals Effect of Self-Healing on Fatigue Behavior of Structural Ceramics and Influence Factors on Fatigue Strength of Healed Ceramics

Author(s):  
Wataru Nakao
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2171
Author(s):  
Armin Yousefi ◽  
Ahmad Serjouei ◽  
Reza Hedayati ◽  
Mahdi Bodaghi

In the present study, the fatigue behavior and tensile strength of A6061-T4 aluminum alloy, joined by friction stir spot welding (FSSW), are numerically investigated. The 3D finite element model (FEM) is used to analyze the FSSW joint by means of Abaqus software. The tensile strength is determined for FSSW joints with both a probe hole and a refilled probe hole. In order to calculate the fatigue life of FSSW joints, the hysteresis loop is first determined, and then the plastic strain amplitude is calculated. Finally, by using the Coffin-Manson equation, fatigue life is predicted. The results were verified against available experimental data from other literature, and a good agreement was observed between the FEM results and experimental data. The results showed that the joint’s tensile strength without a probe hole (refilled hole) is higher than the joint with a probe hole. Therefore, re-filling the probe hole is an effective method for structures jointed by FSSW subjected to a static load. The fatigue strength of the joint with a re-filled probe hole was nearly the same as the structure with a probe hole at low applied loads. Additionally, at a high applied load, the fatigue strength of joints with a refilled probe hole was slightly lower than the joint with a probe hole.


2007 ◽  
Vol 561-565 ◽  
pp. 2179-2182 ◽  
Author(s):  
Mehmet Cingi ◽  
Onur Meydanoglu ◽  
Hasan Guleryuz ◽  
Murat Baydogan ◽  
Huseyin Cimenoglu ◽  
...  

In this study, the effect of thermal oxidation on the high cycle rotating bending fatigue behavior of Ti6Al4V alloy was investigated. Oxidation, which was performed at 600°C for 60 h in air, considerably improved the surface hardness and particularly the yield strength of the alloy without scarifying the tensile ductility. Unfortunately, the rotating bending fatigue strength at 5x106 cycles decreased from about 610 MPa to about 400 MPa upon oxidation. Thus, thermal oxidation leaded a reduction in the fatigue strength of around 34%, while improving the surface hardness (HV0.1) and yield strength 85 % and 36 %, respectively.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 843 ◽  
Author(s):  
André Reck ◽  
André Till Zeuner ◽  
Martina Zimmermann

The study presented investigates the fatigue strength of the (α+β) Ti-6Al-4V-ELI titanium alloy processed by laser cutting with and without mechanical post-processing. The surface quality and possible notch effects as a consequence of non-optimized intermediate cutting parameters are characterized and evaluated. The microstructural changes in the heat-affected zone (HAZ) are documented in detail and compared to samples with a mechanically post-processed (barrel grinding, mechanical polishing) surface condition. The obtained results show a significant increase (≈50%) in fatigue strength due to mechanical post-processing correlating with decreased surface roughness and minimized notch effects when compared to the surface quality of the non-optimized laser cutting. The martensitic α’-phase is detected in the HAZ with the formation of distinctive zones compared to the initial equiaxial α+β microstructure. The HAZ could be removed up to 50% by means of barrel grinding and up to 100% through mechanical polishing. A fracture analysis revealed that the fatigue cracks always initiate on the laser-cut edges in the as-cut surface condition, which could be assigned to an irregular macro and micro-notch relief. However, the typical characteristics of the non-optimized laser cutting process (melting drops and significant higher surface roughness) lead to early fatigue failure. The fatigue cracks solely started from the micro-notches of the surface relief and not from the dross. As a consequence, the fatigue properties are dominated by these notches, which lead to significant scatter, as well as decreased fatigue strength compared to the surface conditions with mechanical finishing and better surface quality. With optimized laser-cutting conditions, HAZ will be minimized, and surface roughness strongly decreased, which will lead to significantly improved fatigue strength.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1499
Author(s):  
Patricio G. Riofrío ◽  
Fernando Antunes ◽  
José Ferreira ◽  
António Castanhola Batista ◽  
Carlos Capela

This work is focused on understanding the significant factors affecting the fatigue strength of laser-welded butt joints in thin high-strength low-alloy (HSLA) steel. The effects of the weld profile, imperfections, hardness, and residual stresses were considered to explain the results found in the S-N curves of four welded series. The results showed acceptable fatigue strength although the welded series presented multiple-imperfections. The analysis of fatigue behavior at low stress levels through the stress-concentrating effect explained the influence of each factor on the S-N curves of the welded series. The fatigue limits of the welded series predicted through the stress-concentrating effect and by the relationship proposed by Murakami showed good agreement with the experimental results.


2014 ◽  
Vol 1018 ◽  
pp. 269-276
Author(s):  
Andrea Reiß ◽  
Ulf Engel

With cold forging processes it is possible to produce parts characterized by high strength, high dimensional accuracy and high surface quality. In order to optimize the forming process and to be able to use the advantages of cold forging specifically and combined, it is necessary to find correlations between manufacturing parameters on the one side, strength and other properties like hardness distribution and surface quality of the component on the other side. The research work covered in this paper focuses on the correlation of the components properties influenced by its manufacturing history and their fatigue strength. The used component is a gear produced by a lateral cold forging process. For the investigations an experimental setup has been designed. The aim for the design of the setup is to reproduce the real contact condition for the contact of two gears. To obtain different component properties the production process of the gear was varied by producing the parts by a milling operation. First of all, the components’ properties, for example hardness distribution, remaining residual stresses, orientation of fibers and surface quality, were determined. The components’ fatigue behavior was determined using a high frequency pulsator and evaluated in terms of finite life fatigue strength and fatigue endurance limit. These examinations were used to produce Woehler curves for the differently manufactured components with a certain statistical data analysis method.


2015 ◽  
Vol 60 (2) ◽  
pp. 1331-1334 ◽  
Author(s):  
M.C. Oh ◽  
H. Yeom ◽  
Y. Jeon ◽  
B. Ahn

Abstract The influence of surface heat treatment using laser radiation on the fatigue strength and corresponding microstructural evolution of AISI 4140 alloy steel was investigated in this research. The AISI 4140 alloy steel was radiated by a diode laser to give surface temperatures in the range between 600 and 800°C, and subsequently underwent vibration peening. The fatigue behavior of surface-treated specimens was examined using a giga-cycle ultrasonic fatigue test, and it was compared with that of non-treated and only-peened specimens. Fatigue fractured surfaces and microstructural evolution with respect to the laser treatment temperatures were investigated using an optical microscope. Hardness distribution was measured using Vickers micro-hardness. Higher laser temperature resulted in higher fatigue strength, attributed to the phase transformation.


2012 ◽  
Vol 500 ◽  
pp. 484-488
Author(s):  
Wo Bo Zhang

According to analyzing the influence factors of shaft fatigue properties, the matching relationships between fatigue properties and shaft material as well as other relevant factors have been investigated. And the matching relationships have been demonstrated via experimentation. A useful method is established to enhance material fatigue toughness. Considering the aspects of safety, economy and the requirement of fatigue strength, when the dimension of the structure could not be changed, the fatigue properties can be improved via increasing the fillet of the shaft. And 45 carbon steel is a highly recommended shaft material.


2018 ◽  
Vol 165 ◽  
pp. 06001 ◽  
Author(s):  
André Reck ◽  
Stefan Pilz ◽  
Ulrich Thormann ◽  
Volker Alt ◽  
Annett Gebert ◽  
...  

This study examined the fatigue properties of a newly developed cast and thermomechanical processed (β)-Ti-40Nb alloy for a possible application as biomedical alloy due to exceptional low Young’s modulus (64-73 GPa), high corrosion resistance and ductility (20-26%). Focusing on the influence of two microstructural states with fully recrystallized β-grain structure as well as an aged condition with nanometer-sized ω-precipitates, tension-compression fatigue tests (R=-1) were carried out under lab-air and showed significant differences depending on the β-phase stability under cyclic loading. Present ω- precipitates stabilized the β-phase against martensitic α’’ phase transformations leading to an increased fatigue limit of 288 MPa compared to the recrystallized state (225 MPa), where mechanical polishing and subsequent cyclic loading led to formation of α’’-phase due to the metastability of the β-phase. Additional studied commercially available (β)-Ti-45Nb alloy revealed slightly higher fatigue strength (300 MPa) and suggest a change in the dominating cyclic deformation mechanisms according to the sensitive dependence on the Nb-content. Further tests in simulated body fluid (SBF) at 37°C showed no decrease in fatigue strength due to the effect of corrosion and prove the excellent corrosion fatigue resistance of this alloy type under given test conditions.


2021 ◽  
Vol 1016 ◽  
pp. 125-131
Author(s):  
Masahiro Goto ◽  
T. Yamamoto ◽  
S.Z. Han ◽  
J. Kitamura ◽  
J.H. Ahn ◽  
...  

On the thermomechanical treatments of Cu-Ni-Si alloy, cold-rolling (CR) before solution heat treatment (SHT) is commonly conducted to eliminate defects in a casting slab. In addition, a rolling is applied to reduce/adjust the thickness of casting slab before SHT. In a heavily deformed microstructure by CR, on the other hand, grain growth during a heating in SHT is likely to occur as the result of recrystallization. In general, tensile strength and fatigue strength tend to decrease with an increase in the grain size. However, the effect of difference in grain sizes produced by with and without CR before SHT on the fatigue strength is unclear. In the present study, fatigue tests of Cu-6Ni-Si alloy smooth specimens with a grain fabricated through different thermomechanical processes were conducted. The fatigue behavior of Cu-Ni-Si alloy was discussed.


2020 ◽  
Vol 7 ◽  
pp. 23
Author(s):  
Mesfin Sisay ◽  
Esakki Balasubramanian

Selective inhibition sintering (SIS) is a powder based that fabricate functional parts through fusion of powder bed on a layer by layer basis. Being a new fabrication method, the correlation between process variables and part properties are not fully comprehended. Polyamide 12 (nylon 12) is one of the widely used materials in powder based AM processes including SIS. Therefore, in this work, the effect of critical SIS process parameters on the fatigue behavior of polyamide 12 parts was experimentally investigated, and the parameter settings were optimized to maximize fatigue strength. The number of experimental runs was determined based on Box-Behnken design, and specimens were fabricated as per ASTM D7791. Specimens were tested by subjected them to fluctuating loading at a frequency of 3 Hz. The test results were analyzed using Minitab statistical analysis software. From the ANOVA result, it was identified that the fatigue life of SIS parts is significantly influenced by layer thickness, heater temperature, and heater feed rate. Optimization of process variables settings was performed using the Minitab response optimizer and maximum fatigue strength of 17.43 MPa was obtained. The verification experiment resulted in 17.93 MPa fatigue strength which is comparable to the predicted value and with the result from the literatures.


Sign in / Sign up

Export Citation Format

Share Document