scholarly journals Fretting Wear Performance of PVD Thin Films

2020 ◽  
Author(s):  
Brahim Tlili

Nowadays, most surface treatments are realized through vapor deposition techniques as thin hard coatings to guarantee high surface hardness, low friction coefficient, and improve wear resistance. Several experimental investigations have led to the development of multilayer coatings in preference to the traditional TiN coating. In the current chapter, research was conducted on the fretting wear of (TiAlCN/TiAlN/TiAl) and (TiAlZrN/TiAlN/TiAl) multilayer coatings deposited by reactive DC (magnetron sputtering) of Ti-Al and Ti-Al-Zr alloys on AISI4140 steel. Fretting wear tests (20,000 cycles at 5 Hz) were conducted in ambient conditions, where the interaction between normal load and displacement amplitude determined the fretting regime. The influence of the normal load and displacement amplitude on the coefficients of instantaneous coefficient of friction and stabilized coefficient of friction is different in the two multilayer, coated steels. The PVD coating (TiAlZrN/TiAlN/TiAl) reduces the friction. The worn volume of coated AISI4140 steel is sensitive to normal load and displacement amplitude. The relation between worn volume and cumulative dissipated energy was established for the two coated steels. The energetic fretting wear coefficients were also determined. A multilayer (TiAlZrN/TiAlN/TiAl) coating has a low energetic wear coefficient.

2003 ◽  
Vol 125 (3) ◽  
pp. 661-669 ◽  
Author(s):  
Masaya Kurokawa ◽  
Yoshitaka Uchiyama ◽  
Tomoaki Iwai ◽  
Susumu Nagai

Tribological properties of several kinds of polyoxymethylene (POM) composites were evaluated for the purpose of developing a polymeric tribomaterial especially suited for mating with aluminum parts having low surface hardness. POM composites containing small amounts of silicon carbide (SiC), POM/SiC; those containing a small amount of calcium octacosanonoate besides SiC, POM/SiC/Ca-OCA; and the one blended with 24 wt % of polytetrafluoroethylene, POM/PTFE(24); were injection-molded into pin specimens and their tribological properties were tested by means of a pin-on-disk type wear apparatus using an aluminum (A5056) mating disk in comparison with a 303 stainless steel (SUS303) disk. Evaluation was focused on observation of the sliding surfaces of the pin specimens and the mating disks by a scanning electron microscope and an optical microscope together with the measurement of surface roughness. In the case of mating against a SUS303 disk having high surface hardness, all pin specimens did not roughen the disk surfaces even after long time of rubbing. Only POM/PTFE(24) composite obviously made a transfer film on the disk surface, while the other composites made an extremely thin one on it. POM/SiC(0.1)/Ca-OCA(1) composite, containing SiC 0.1 wt. % and Ca-OCA 1 wt. %, was found to show the lowest coefficient of friction and the lowest wear rate forming extremely thin transfer film on the mating disk. On the other hand, against an A5056 disk which has lower surface hardness than that of SUS303 disk, unfilled POM and POM composites except POM/SiC(0.1)/Ca-OCA(1) composite roughened the disk surfaces. However, the sliding surface of the A5056 disk rubbed with POM/SiC(0.1)/Ca-OCA(1) composite was significantly smoother and that of the pin specimen was also quite smooth in comparison with other pin specimens. Further, when each POM composite was rubbed against the A5056 disk, formation of transfer film was not obvious on the disk surfaces. For POM/SiC(0.1)/Ca-OCA(1) composite, the wear rate was the lowest of all POM composites, and the coefficient of friction was as low level as 60 percent of that of unfilled POM, but slightly higher than that of POM/PTFE(24) composite. For POM/SiC(0.1)/Ca-OCA(1) composite, the nucleating effect of SiC and Ca-OCA, which accelerated the crystallization of POM during its injection molding to form a matrix containing fine spherulites, must have resulted in increasing the toughness of the matrix and lowering the wear rate. Also, the lubricant effect of Ca-OCA should have lowered the coefficient of friction of the same matrix for rubbing against aluminum mating disk. POM/SiC(0.1)/Ca-OCA(1) composite was concluded as an excellent tribomaterial for mating with aluminum parts.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
D. Khabale ◽  
M. F. Wani

Fretting wear studies were conducted on AZ91 and AE42 magnesium alloys against steel ball. Average coefficient of friction (COF) remains steady with the increase in running time. However, average coefficient of friction decreases with the increase in normal load and frequency and marginally increases with the increase in amplitude. A constant average coefficient of friction of 0.06 was observed for both AZ91 and AE42 under dry sliding conditions at normal load of 50 N. Wear volume increases linearly with increasing running time. Wear volume first decreases sharply, attains minima, and then increases marginally with the increase in normal load. However, wear volume increases with increasing amplitude and frequency. Higher specific wear rate of 10.5 × 10−6 mm3 N−1·m−1 was observed for AE42, as compared to 4.5 × 10−6 mm3 N−1·m−1 for AZ91. The wear in magnesium alloy was caused by a combination of adhesion, abrasion, oxidation, delamination, and plastic deformation under different fretting conditions.


2007 ◽  
Vol 344 ◽  
pp. 251-258 ◽  
Author(s):  
Peter Groche ◽  
Jens Ringler ◽  
Dragoslav Vucic

Due to the high effort involved, bifurcated constructions in mass market products made from sheet metal remained largely unused. Extruded profiles with cross-sections containing bifurcations show the possibility to increase the stiffness and allow modern lightweight design using load optimized structures as well as in box strap, sandwich and stringer constructions or different profiles. The two new forming processes linear flow splitting and linear bend splitting developed at the PtU enable the production of bifurcated profiles in integral style made of sheet metal without joining, lamination of material or heating of the semi-finished product. These forming processes use obtuse angled splitting rolls and supporting rolls to transform the sheet metal at ambient temperature. Whereas the linear flow splitting process increase the surface of the band edge and forms the band into two flanges. At linear bend splitting a bended sheet metal as semi finished product is used. Thereby bifurcations at nearly any place of a sheet metal can be produced. Both processes induce high hydrostatic compressive stresses in the local forming zone during the process which leads to an increased formability of the material and thereby to the realization of large strains. Parts produced are characterized by increased stiffness, high surface hardness and low surface roughness. Experimental investigations have shown an increasing of the band edge surface at maximum splitting depth up to 1800%. By a following forming process new multi-chambered structures and integral stringer construction can be realized with thin walled cross-sections from steel of higher strength.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3250 ◽  
Author(s):  
Lenart ◽  
Pawlus ◽  
Dzierwa

Experimental investigations were carried out with an Optimol SRV5 tribological tester in a flat-on-sphere scheme. The balls co-acted with the discs in a gross sliding fretting regime. The balls and discs were made from the same steel with a very similar hardness. Tests were conducted at 25–35% relative humidity, 30 °C, and a constant normal load and number of cycles (18,000). The discs had different textures after various machining treatments. It was found that the total wear level of the tribological assembly was proportional to the disc surface amplitude. The influence of the disc roughness on the coefficient of friction was evident only for the smallest stroke of 0.1 mm, and the frequency of oscillation affected this dependency.


Alloy Digest ◽  
2017 ◽  
Vol 66 (12) ◽  

Abstract NITRODUR 8524 (8CrMo16, 1.8524) is one of the Nitrodur family of nitriding steels that are used where high surface hardness and good fatigue strength are required and the material is also subjected to high temperatures. Nitrided surfaces maintain their hardness and strength at operating temperatures of up to approximately 500–550 deg C (932–1022 deg F). This datasheet provides information on composition, hardness, and tensile properties as well as fracture toughness. It also includes information on surface qualities as well as casting and forming. Filing Code: SA-807. Producer or source: Schmolz + Bickenbach Group.


Alloy Digest ◽  
2020 ◽  
Vol 69 (2) ◽  

Abstract Deutsche Edelstahlwerke Cryodur 2067 is a high-carbon, 1.5% chromium, alloy cold-work tool steel. In view of its higher hardenability than that of the non-alloy, water-hardening, cold work tool steels, this steel can be oil quenched, a factor that minimizes dimensional changes during quench hardening. Cryodur 2067 is suitable for short run tooling in applications requiring high surface hardness. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, and machining. Filing Code: TS-786. Producer or source: Deutsche Edelstahlwerke Specialty Steel.


Author(s):  
Goutam Chandra Karar ◽  
Nipu Modak

The experimental investigation of reciprocating motion between the aluminum doped crumb rubber /epoxy composite and the steel ball has been carried out under Reciprocating Friction Tester, TR-282 to study the wear and coefficient of frictions using different normal loads (0.4Kg, 0.7Kgand1Kg), differentfrequencies (10Hz, 25Hz and 40Hz).The wear is a function of normal load, reciprocating frequency, reciprocating duration and the composition of the material. The percentage of aluminum presents in the composite changesbut the other components remain the same.The four types of composites are fabricated by compression molding process having 0%, 10%, 20% and 30% Al. The effect of different parameters such as normal load, reciprocating frequency and percentage of aluminum has been studied. It is observed that the wear and coefficient of friction is influenced by the parameters. The tendency of wear goes on decreasing with the increase of normal load and it is minimum for a composite having 10%aluminum at a normal load of 0.7Kg and then goes on increasing at higher loads for all types of composite due to the adhesive nature of the composite. The coefficient of friction goes on decreasing with increasing normal loads due to the formation of thin film as an effect of heat generation with normal load.


2021 ◽  
pp. 095605992110222
Author(s):  
Chrysl A Aranha ◽  
Markus Hudert ◽  
Gerhard Fink

Interlocking Particle Structures (IPS) are geometrically stable assemblies, usually fabricated from plate type elements that are interconnected by slotted joints. IPS are demountable and their components have the potential to be used and reused in different structures and configurations. This paper explores the applicability of birch plywood panels, which are characterized by a high surface hardness, for this type of structural system. Experimental tests were conducted to determine the mechanical properties of birch plywood plates. Moreover, IPS connections with different geometrical properties were investigated for two different load exposures: bending and rotation. The characteristics under bending exposure are influenced by the orientation of the face-veneers. For the rotational load exposure, very small strength and stiffness properties have been identified. A linear elastic finite element model is presented that shows a wide agreement with the test results. The study serves as an initial probe into the performance of IPS structures at the component level. Various aspects that are relevant for the design of IPS, such as the assembly, the accuracy and challenges regarding digital fabrication, the durability, and the structural performance are discussed.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2153
Author(s):  
Tengfei Zhang ◽  
Jie Su ◽  
Yuanjie Shu ◽  
Fei Shen ◽  
Liaoliang Ke

Rubbers are widely used in various fields as the important sealing materials, such as window seal, door seal, valve, pump seal, etc. The fretting wear behavior of rubbers has an important effect on their sealing performance. This paper presents an experimental study on the fretting wear behavior of rubbers against the steel ball under air conditions (room temperature at 20 ± 2 °C and humidity at 40%). Three kinds of rubbers, including EPDM (ethylene propylene diene monomer), FPM (fluororubber), and NBR (nitrile–butadiene rubber), are considered in experiments. The sphere-on-flat contact pattern is used as the contact model. The influences of the displacement amplitude, normal force, frequency, and rubber hardness on the fretting wear behavior are discussed in detail. White light profiler and scanning electron microscope (SEM) are used to analyze the wear mechanism of the rubber surface. The fretting wear performances of three rubbers are compared by considering the effect of the displacement amplitude, normal force, frequency, and rubber hardness. The results show that NBR has the most stable friction coefficient and the best wear resistance among the three rubbers.


2020 ◽  
Vol 59 (1) ◽  
pp. 553-585
Author(s):  
Suman Kumari Mishra

AbstractFor engineering applications, hardness must be complimented with high toughness for applications where high contact loads are there. A good combination of hardness, toughness and low coefficient of friction can be achieved, by suitable tailoring of microstructures of coating in hard nanocomposite coatings. Tribologocal applications require hard coatings with tailored functionalities for different applications; hard nanocomposite coatings are potential materials for such applications. Ti and amorphous carbon based systems have shown more promising material. The present review discusses the nanocomposite hard coatings, mechanism of enhancement of toughness, multilayer hard nanocomposite coatings. Here, mainly Ti and Si based nanocomposite has been discussed as carbon based reviews are available in plenty in literature and well documented. Ti-B-N, Ti-Si-B-C, Ti-Si-B-C-N, Si-C-N, Ti-Al-N, Ti-Al-Si-N, Al-Si-N, Ti-Cr-Al-N, Zr-Si-N and some other similar system nanocomposite hard coatings are important where the gradual and intelligent additions of different elements in hard single component phase provides the combination of hardness, toughness and low coefficient of friction. Some of these systems are discussed. In the end, the future directions of research, Technology„ which are required to achieve tough nanocomposite hard coatings for actual applications are also highlighted.


Sign in / Sign up

Export Citation Format

Share Document