Pressure Measurements on Flapped Hydrofoils in Cavity Flows and Wake Flows

1967 ◽  
Vol 11 (03) ◽  
pp. 170-189
Author(s):  
M. C. Meijer

The purpose of the present experiments is to obtain detailed information about the flow field, such as the pressure distribution, at the surface of a flapped hydrofoil in full cavity or wake flows. The model and the experimental procedure are described. The experimental results obtained have been used to compare with the theoretical predictions, to investigate the tunnel wall effect and to estimate the viscous effect at a sharp corner. Anempirical method for correcting the tunnel wall effect is developed here, the validity of which is supported by tests with models of three different sizes. An appreciable Viscous effect has been found near the hinge of a deflected flap. Except for this effect, the theory and experiments are found to be in good agreement.

1988 ◽  
Vol 92 (911) ◽  
pp. 36-53 ◽  
Author(s):  
P. R. Ashill ◽  
R. F. A. Keating

Summary A method is described for calculating wall interference in solid-wall wind tunnels from measurements of static pressures at the walls. Since it does not require a simulation of the model flow, the technique is particularly suited to determining wall interference for complex flows such as those over VSTOL aircraft, helicopters and bluff shapes (e.g. cars and trucks). An experimental evaluation shows that the method gives wall-induced velocities which are in good agreement with those of existing methods in cases where these techniques are valid, and illustrates its effectiveness for inclined jets which are not readily modelled.


1984 ◽  
Vol 28 (01) ◽  
pp. 70-75
Author(s):  
C. C. Hsu

Simple wall correction rules for two-dimensional and nearly two-dimensional cavity flows in closed or free jet water tunnels, based on existing linearized analyses, are made. Numerical results calculated from these expressions are compared with existing experimental findings. The present theoretical predictions are, in general, in good agreement with data.


1964 ◽  
Vol 8 (05) ◽  
pp. 15-28
Author(s):  
J. P. Breslin ◽  
T. Kowalski

Vibratory pressures exerted on cylindrical and flat-plate boundaries due to a model propeller were measured at three advance coefficients. A number of "free-space" measurements also were made. All measurements were made by driving a propeller past fixed pressure gages. This method yielded curves of pressure changes which are entirely free from background noise. The magnitudes of the free-space pressures were found to be larger than one half the corresponding magnitudes measured by gages mounted flush in a large plate at equal clearances from the propeller. By postulating that the finite area of the gage diaphragm produces a partial image of the propeller (and hence a larger pressure than that in free space) an experimental procedure was devised for correcting for this finite-area effect yielding results in good agreement with theory. A theoretical treatment of this effect of finite gage size is given in Appendix 2. The decay of maximum amplitudes of vibrating pressures is shown by means of three-dimensional plots. The pressures were found to become vanishingly small within approximately one propeller diameter fore and aft of the center of the propeller. The comparison with theoretically calculated pressures and forces gives very close agreement for free-space pressures and reasonable agreement for forces on a cylindrical surface. The agreement of both pressures and forces with theory is excellent for operation near the design advance ratio. A strong plea is made for further experiments with ship models in an effort to develop design criteria for practical application.


2014 ◽  
Vol 118 (1200) ◽  
pp. 109-122 ◽  
Author(s):  
N. Jansson ◽  
G. Stenfelt

Abstract Steady and unsteady pressure measurements are conducted for a tailless aircraft model. The main aim with the presented experimental work is to investigate the difficulties and possibilities involved in using an available pressure sensing system for accurate unsteady pressure measurement. The experimental procedure which is utilised for unsteady pressure measurements is described in detail. In particular, the importance of synchronised timing is recognised. For a harmonically varying pressure a small time delay in the measurement chain can result in a significant phase shift. Also, difficulties and uncertainties that are still present are pointed out. The results from these experiments are compared to numerical results based on unsteady potential flow theory. In general, the experimental and computational results show similar trends. Especially good agreement is found for the steady pressure measurements. For the unsteady pressure measurements a possible Reynolds number dependency is found for the considered test conditions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 830
Author(s):  
Julio Cesar Martinez-Garcia ◽  
Alexandre Serraïma-Ferrer ◽  
Aitor Lopeandía-Fernández ◽  
Marco Lattuada ◽  
Janak Sapkota ◽  
...  

In this work, the effective mechanical reinforcement of polymeric nanocomposites containing spherical particle fillers is predicted based on a generalized analytical three-phase-series-parallel model, considering the concepts of percolation and the interfacial glassy region. While the concept of percolation is solely taken as a contribution of the filler-network, we herein show that the glassy interphase between filler and matrix, which is often in the nanometers range, is also to be considered while interpreting enhanced mechanical properties of particulate filled polymeric nanocomposites. To demonstrate the relevance of the proposed generalized equation, we have fitted several experimental results which show a good agreement with theoretical predictions. Thus, the approach presented here can be valuable to elucidate new possible conceptual routes for the creation of new materials with fundamental technological applications and can open a new research avenue for future studies.


1984 ◽  
Vol 106 (1) ◽  
pp. 29-35 ◽  
Author(s):  
P. Cawley

The susceptibility to bias error of two methods for computing transfer (frequency response) functions from spectra produced by FFT-based analyzers using random excitation has been investigated. Results from tests with an FFT analyzer on a single degree-of-freedom system set up on an analogue computer show good agreement with the theoretical predictions. It has been shown that, around resonance, the bias error in the transfer function estimate H2 (Syy/Sxy*) is considerably less than that in the more commonly used estimate, H1 (Sxy/Sxx). The record length, and hence the testing time, required for a given accuracy is reduced by over 50 percent if the H2 calculation procedure is used. The analysis has also shown that if shaker excitation is used on lightly damped structures with low modal mass, it is important to minimize the mass of the force gage and the moving element of the shaker.


1978 ◽  
Vol 22 (03) ◽  
pp. 140-169
Author(s):  
Milton Martin

A theoretical method is derived for predicting the linearized response characteristics of constant deadrise high-speed planing boats in head and following waves. Comparisons of the theoretical predictions of the pitch and heave response amplitude operators and phase angles with existing experimental data show reasonably good agreement for a wide variety of conditions of interest. It appears that nonlinear effects are more severe at a speed to length ratio of 6 than of, say, 4 or less, principally because of the reduction of the damping ratio of the boat with increasing speed, and the consequent increase in motions in the vicinity of the resonant encounter frequency. However, it is concluded that the linear theory can provide a simple and fast means of determining the effect of various parameters such as trim angle, deadrise, loading, and speed on the damping, natural frequency, and linearized response in waves, and that this can furnish valuable insight into the actual boat dynamics, even though the accurate predictions of large motions and peak accelerations would require a nonlinear analysis.


2018 ◽  
Vol 27 (5-6) ◽  
Author(s):  
Ariadne-Αnne Tsambali ◽  
Avraam A. Konstantinidis ◽  
Elias C. Aifantis

AbstractThe double diffusivity model proposed earlier by Aifantis and co-workers was applied in this work for modelling the diffusion of metals in sandy aquifers, as well as chloride diffusion in concrete specimens. The theoretical predictions are in very good agreement with the measured concentrations in all cases, showing that the model is capable of dealing with a large variety of double diffusivity problems.


2010 ◽  
Vol 42 (02) ◽  
pp. 577-604 ◽  
Author(s):  
Yana Volkovich ◽  
Nelly Litvak

PageRank with personalization is used in Web search as an importance measure for Web documents. The goal of this paper is to characterize the tail behavior of the PageRank distribution in the Web and other complex networks characterized by power laws. To this end, we model the PageRank as a solution of a stochastic equationwhere theRis are distributed asR. This equation is inspired by the original definition of the PageRank. In particular,Nmodels the number of incoming links to a page, andBstays for the user preference. Assuming thatNorBare heavy tailed, we employ the theory of regular variation to obtain the asymptotic behavior ofRunder quite general assumptions on the involved random variables. Our theoretical predictions show good agreement with experimental data.


1981 ◽  
Vol 103 (2) ◽  
pp. 295-301 ◽  
Author(s):  
J. J. Coy ◽  
E. V. Zaretsky

Elastohydrodynamic film thickness was measured for a 20-mm ball bearing using the capacitance technique. The bearing was thrust loaded to 90, 448, and 778 N (20, 100, and 175 lb). The corresponding maximum stresses on the inner race were 1.28, 2.09, and 2.45 GPa (185,000, 303,000, and 356,000 psi). Test speeds ranged from 400 to 14,000 rpm. Film thickness measurements were taken with four different lubricants: (a) synthetic paraffinic, (b) synthetic paraffinic with additives, (c) neopentylpolyol (tetra) ester meeting MIL-L-23699A specifications, and (d) synthetic cycloaliphatic hydrocarbon traction fluid. The test bearing was mist lubricated. Test temperatures were 300, 338, and 393 K. The measured results were compared to theoretical predictions using the formulae of Grubin, Archard and Cowking, Dowson and Higginson, and Hamrock and Dowson. There was good agreement with theory at low dimensionless speed, but the film was much smaller than theory predicts at higher speeds. This was due to kinematic starvation and inlet shear heating effects. Comparisons with Chiu’s theory on starvation and Cheng’s theory on inlet shear heating were made.


Sign in / Sign up

Export Citation Format

Share Document