scholarly journals Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Illyce Nuñez ◽  
Marbelys Rodriguez Pino ◽  
David J Wiley ◽  
Maitreyi E Das ◽  
Chuan Chen ◽  
...  

RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.

Blood ◽  
2011 ◽  
Vol 118 (22) ◽  
pp. 5732-5740 ◽  
Author(s):  
Maria Baou ◽  
John D. Norton ◽  
John J. Murphy

Abstract Posttranscriptional mechanisms are now widely acknowledged to play a central role in orchestrating gene-regulatory networks in hematopoietic cell growth, differentiation, and tumorigenesis. Although much attention has focused on microRNAs as regulators of mRNA stability/translation, recent data have highlighted the role of several diverse classes of AU-rich RNA-binding protein in the regulation of mRNA decay/stabilization. AU-rich elements are found in the 3′-untranslated region of many mRNAs that encode regulators of cell growth and survival, such as cytokines and onco/tumor-suppressor proteins. These are targeted by a burgeoning number of different RNA-binding proteins. Three distinct types of AU-rich RNA binding protein (ARE poly-U–binding degradation factor-1/AUF1, Hu antigen/HuR/HuA/ELAVL1, and the tristetraprolin/ZFP36 family of proteins) are essential for normal hematopoiesis. Together with 2 further AU-rich RNA-binding proteins, nucleolin and KHSRP/KSRP, the functions of these proteins are intimately associated with pathways that are dysregulated in various hematopoietic malignancies. Significantly, all of these AU-rich RNA-binding proteins function via an interconnected network that is integrated with microRNA functions. Studies of these diverse types of RNA binding protein are providing novel insight into gene-regulatory mechanisms in hematopoiesis in addition to offering new opportunities for developing mechanism-based targeted therapeutics in leukemia and lymphoma.


2020 ◽  
Author(s):  
Pengfei Wu ◽  
Hao Yuan ◽  
Xiangya Ding ◽  
Qun Chen ◽  
Wanli Ge ◽  
...  

Abstract Background LncRNAs are reported to play an essential role in multiple tumors, including pancreatic cancer. LncRNAs could impact tumor growth via RNA-binding proteins, working as a coactivators of transcription factors or impacting their gene expression via posttranscriptional regulation. Our study aimed to elucidate the function and mechanism of lncRNA KCNK15-AS1 and its binding protein ACTR3B in PC progression. Our previous data indicated that KCNK15-AS1 is downregulated in PC tissues and cell lines compared to normal controls. Methods In this study, we overexpressed KCNK15-AS1 and ACTR3B in both BxPC-3 and Mia-PaCa-2 cells to detect the cellular phenotype in vitro and in vivo. RNA pulldown assays, mass spectrometry assays and RNA-binding protein immunoprecipitation assays were used to verify KCNK15-AS1 RNA binding protein ACTR3B. Luciferase reporter assay and ubiquitination assay were proceeded to detect the mechanism KCNK15-AS1 upregulated ACTR3B expression. Results Our results showed that overexpression of KCNK15-AS1 significantly inhibited the proliferation, colony formation and migration of PC cells. ACTR3B was screened by RNA pulldown and mass spectrometry assays. RNA-binding protein immunoprecipitation assays confirmed that KCNK15-AS1 physically bound to ACTR3B. Furthermore, mechanistic analyses demonstrated that KCNK15-AS1 promoted ACTR3B expression by inhibiting ACTR3B ubiquitin-mediated degradation and enhancing its promoter activity. Additionally, ACTR3B presented low expression in PC tissues and cell lines, and PC cell growth was significantly repressed when ACTR3B was overexpressed. Moreover, knockdown of ACTR3B in KCNK15-AS1-overexpressing cells reversed the effects of KCNK15-AS1 on PC cell growth via the cyclin D1/CDK4 axis. Conclusion Briefly, our study indicated that the lncRNA KCNK15-AS1/ACTR3B/cyclin D1/CDK4 axis may inhibit PC progression, which provides a potential therapeutic target for PC.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 552
Author(s):  
Jasmine Harley ◽  
Benjamin E. Clarke ◽  
Rickie Patani

RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.


2013 ◽  
Vol 87 (24) ◽  
pp. 13409-13421 ◽  
Author(s):  
J. E. Petrillo ◽  
P. A. Venter ◽  
J. R. Short ◽  
R. Gopal ◽  
S. Deddouche ◽  
...  

2011 ◽  
Vol 22 (16) ◽  
pp. 2875-2885 ◽  
Author(s):  
Mai Nguyen Chi ◽  
Jacques Auriol ◽  
Bernard Jégou ◽  
Dimitris L. Kontoyiannis ◽  
James M.A. Turner ◽  
...  

Posttranscriptional mechanisms are crucial to regulate spermatogenesis. Accurate protein synthesis during germ cell development relies on RNA binding proteins that control the storage, stability, and translation of mRNAs in a tightly and temporally regulated manner. Here, we focused on the RNA binding protein Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) known to be a key regulator of posttranscriptional regulation in somatic cells but the function of which during gametogenesis has never been investigated. In this study, we have used conditional loss- and gain-of-function approaches to address this issue in mice. We show that targeted deletion of HuR specifically in germ cells leads to male but not female sterility. Mutant males are azoospermic because of the extensive death of spermatocytes at meiotic divisions and failure of spermatid elongation. The latter defect is also observed upon HuR overexpression. To elucidate further the molecular mechanisms underlying spermatogenesis defects in HuR-deleted and -overexpressing testes, we undertook a target gene approach and discovered that heat shock protein (HSP)A2/HSP70-2, a crucial regulator of spermatogenesis, was down-regulated in both situations. HuR specifically binds hspa2 mRNA and controls its expression at the translational level in germ cells. Our study provides the first genetic evidence of HuR involvement during spermatogenesis and reveals Hspa2 as a target for HuR.


FEBS Open Bio ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1964-1976 ◽  
Author(s):  
Nirmala Tilija Pun ◽  
Amrita Khakurel ◽  
Aastha Shrestha ◽  
Sang‐Hyun Kim ◽  
Pil‐Hoon Park

2019 ◽  
Vol 4 (Spring 2019) ◽  
Author(s):  
Alexa Vandenburg

The Norris lab recently identified two RNA binding proteins required for proper neuron-specific splicing. The lab conducted touch- response behavioral assays to assess the function of these proteins in touch-sensing neurons. After isolating C. elegans worms with specific phenotypes, the lab used automated computer tracking and video analysis to record the worms’ behavior. The behavior of mutant worms differed from that of wild-type worms. The Norris lab also discovered two possible RNA binding protein sites in SAD-1, a neuronal gene implicated in the neuronal development of C. elegans1. These two binding sites may control the splicing of SAD-1. The lab transferred mutated DNA into the genome of wild-type worms by injecting a mutated plasmid. The newly transformed worms fluoresced green, indicating that the two binding sites control SAD-1 splicing.


1993 ◽  
Vol 13 (10) ◽  
pp. 6102-6113
Author(s):  
J T Anderson ◽  
M R Paddy ◽  
M S Swanson

Proteins that directly associate with nuclear polyadenylated RNAs, or heterogeneous nuclear RNA-binding proteins (hnRNPs), and those that associate with cytoplasmic mRNAs, or mRNA-binding proteins (mRNPs), play important roles in regulating gene expression at the posttranscriptional level. Previous work with a variety of eukaryotic cells has demonstrated that hnRNPs are localized predominantly within the nucleus whereas mRNPs are cytoplasmic. While studying proteins associated with polyadenylated RNAs in Saccharomyces cerevisiae, we discovered an abundant polyuridylate-binding protein, PUB1, which appears to be both an hnRNP and an mRNP. PUB1 and PAB1, the polyadenylate tail-binding protein, are the two major proteins cross-linked by UV light to polyadenylated RNAs in vivo. The deduced primary structure of PUB1 indicates that it is a member of the ribonucleoprotein consensus sequence family of RNA-binding proteins and is structurally related to the human hnRNP M proteins. Even though the PUB1 protein is a major cellular polyadenylated RNA-binding protein, it is nonessential for cell growth. Indirect cellular immunofluorescence combined with digital image processing allowed a detailed comparison of the intracellular distributions of PUB1 and PAB1. While PAB1 is predominantly, and relatively uniformly, distributed within the cytoplasm, PUB1 is localized in a nonuniform pattern throughout both the nucleus and the cytoplasm. The cytoplasmic distribution of PUB1 is considerably more discontinuous than that of PAB1. Furthermore, sucrose gradient sedimentation analysis demonstrates that PAB1 cofractionates with polyribosomes whereas PUB1 does not. These results suggest that PUB1 is both an hnRNP and an mRNP and that it may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm.


2020 ◽  
Vol 295 (42) ◽  
pp. 14291-14304
Author(s):  
Kathrin Bajak ◽  
Kevin Leiss ◽  
Christine Clayton ◽  
Esteban Erben

In Trypanosoma brucei and related kinetoplastids, gene expression regulation occurs mostly posttranscriptionally. Consequently, RNA-binding proteins play a critical role in the regulation of mRNA and protein abundance. Yet, the roles of many RNA-binding proteins are not understood. Our previous research identified the RNA-binding protein ZC3H5 as possibly involved in gene repression, but its role in controlling gene expression was unknown. We here show that ZC3H5 is an essential cytoplasmic RNA-binding protein. RNAi targeting ZC3H5 causes accumulation of precytokinetic cells followed by rapid cell death. Affinity purification and pairwise yeast two-hybrid analysis suggest that ZC3H5 forms a complex with three other proteins, encoded by genes Tb927.11.4900, Tb927.8.1500, and Tb927.7.3040. RNA immunoprecipitation revealed that ZC3H5 is preferentially associated with poorly translated, low-stability mRNAs, the 5′-untranslated regions and coding regions of which are enriched in the motif (U/A)UAG(U/A). As previously found in high-throughput analyses, artificial tethering of ZC3H5 to a reporter mRNA or other complex components repressed reporter expression. However, depletion of ZC3H5 in vivo caused only very minor decreases in a few targets, marked increases in the abundances of very stable mRNAs, an increase in monosomes at the expense of large polysomes, and appearance of “halfmer” disomes containing two 80S subunits and one 40S subunit. We speculate that the ZC3H5 complex might be implicated in quality control during the translation of suboptimal open reading frames.


2020 ◽  
Vol 21 (13) ◽  
pp. 4571 ◽  
Author(s):  
Cole D. Libner ◽  
Hannah E. Salapa ◽  
Michael C. Levin

Neurodegeneration in multiple sclerosis (MS) is believed to underlie disease progression and permanent disability. Many mechanisms of neurodegeneration in MS have been proposed, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, and RNA-binding protein dysfunction. The purpose of this review is to highlight mechanisms of neurodegeneration in MS and its models, with a focus on RNA-binding protein dysfunction. Studying RNA-binding protein dysfunction addresses a gap in our understanding of the pathogenesis of MS, which will allow for novel therapies to be generated to attenuate neurodegeneration before irreversible central nervous system damage occurs.


Sign in / Sign up

Export Citation Format

Share Document