scholarly journals Phenotype inference in an Escherichia coli strain panel

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Marco Galardini ◽  
Alexandra Koumoutsi ◽  
Lucia Herrera-Dominguez ◽  
Juan Antonio Cordero Varela ◽  
Anja Telzerow ◽  
...  

Understanding how genetic variation contributes to phenotypic differences is a fundamental question in biology. Combining high-throughput gene function assays with mechanistic models of the impact of genetic variants is a promising alternative to genome-wide association studies. Here we have assembled a large panel of 696 Escherichia coli strains, which we have genotyped and measured their phenotypic profile across 214 growth conditions. We integrated variant effect predictors to derive gene-level probabilities of loss of function for every gene across all strains. Finally, we combined these probabilities with information on conditional gene essentiality in the reference K-12 strain to compute the growth defects of each strain. Not only could we reliably predict these defects in up to 38% of tested conditions, but we could also directly identify the causal variants that were validated through complementation assays. Our work demonstrates the power of forward predictive models and the possibility of precision genetic interventions.

2019 ◽  
Vol 47 (16) ◽  
pp. e94-e94
Author(s):  
Donghyo Kim ◽  
Seong Kyu Han ◽  
Kwanghwan Lee ◽  
Inhae Kim ◽  
JungHo Kong ◽  
...  

Abstract Genome-wide association studies have discovered a large number of genetic variants in human patients with the disease. Thus, predicting the impact of these variants is important for sorting disease-associated variants (DVs) from neutral variants. Current methods to predict the mutational impacts depend on evolutionary conservation at the mutation site, which is determined using homologous sequences and based on the assumption that variants at well-conserved sites have high impacts. However, many DVs at less-conserved but functionally important sites cannot be predicted by the current methods. Here, we present a method to find DVs at less-conserved sites by predicting the mutational impacts using evolutionary coupling analysis. Functionally important and evolutionarily coupled sites often have compensatory variants on cooperative sites to avoid loss of function. We found that our method identified known intolerant variants in a diverse group of proteins. Furthermore, at less-conserved sites, we identified DVs that were not identified using conservation-based methods. These newly identified DVs were frequently found at protein interaction interfaces, where species-specific mutations often alter interaction specificity. This work presents a means to identify less-conserved DVs and provides insight into the relationship between evolutionarily coupled sites and human DVs.


2009 ◽  
Vol 72 (2) ◽  
pp. 399-402 ◽  
Author(s):  
D. GLENN BLACK ◽  
FEDERICO HARTE ◽  
P. MICHAEL DAVIDSON

Studies have explored the use of various nonlinear regression techniques to better describe shoulder and/or tailing effects in survivor curves. Researchers have compiled and developed a number of diverse models for describing microbial inactivation and presented goodness of fit analysis to compare them. However, varying physiological states of microorganisms could affect the measured response in a particular population and add uncertainty to results from predictive models. The objective of this study was to determine if the shape and magnitude of the survivor curve are possibly the result of the physiological state, relative to growth conditions, of microbial cells at the time of heat exposure. Inactivation tests were performed using Escherichia coli strain K-12 in triplicate for three growth conditions: statically grown cells, chemostat-grown cells, and chemostat-grown cells with buffered (pH 6.5) feed media. Chemostat cells were significantly less heat resistant than the static or buffered chemostat cells at 58°C. Regression analysis was performed using the GInaFiT freeware tool for Microsoft Excel. A nonlinear Weibull model, capable of fitting tailing effects, was effective for describing both the static and buffered chemostat cells. The log-linear response best described inactivation of the nonbuffered chemostat cells. Results showed differences in the inactivation response of microbial cells depending on their physiological state. The use of any model should take into consideration the proper use of regression tools for accuracy and include a comprehensive understanding of the growth and inactivation conditions used to generate thermal inactivation data.


2021 ◽  
Author(s):  
Ruoyu Tian ◽  
Tian Ge ◽  
Jimmy Z. Liu ◽  
Max Lam ◽  
Daniel F. Levey ◽  
...  

Nearly two hundred common-variant depression risk loci have been identified by genome-wide association studies (GWAS). However, the impact of rare coding variants on depression remains poorly understood. Here, we present the largest to date exome analysis of depression based on 320,356 UK Biobank participants. We show that the burden of rare disruptive coding variants in loss-of-function intolerant genes is significantly associated with depression risk. Among 30 genes with false discovery rate (FDR) <0.1, SLC2A1, a blood-brain barrier glucose transporter underlying GLUT1 deficiency syndrome, reached exome-wide significance (P = 2.96e-7). Gene-set enrichment supports neuron projection development and muscle activities as implicated in depression. Integrating exomes with polygenic risk revealed additive contributions from common and rare variants to depression risk. The burden of rare disruptive coding variants for depression overlapped with that of developmental disorder, autism and schizophrenia. Our study provides novel insight into the contribution of rare coding variants on depression and genetic relationships across developmental and psychiatric disorders.


Hematology ◽  
2014 ◽  
Vol 2014 (1) ◽  
pp. 343-347 ◽  
Author(s):  
Marc S. Sabatine ◽  
Jessica L. Mega

Abstract Clopidogrel, a platelet P2Y12 inhibitor, is one of the most widely prescribed drugs in cardiovascular medicine because it reduces ischemic and thrombotic complications. It is a prodrug requiring biotransformation into the active metabolite by the hepatic cytochrome 450 system, especially the CYP2C19 enzyme. Candidate gene studies and genome-wide association studies have identified loss-of-function CYP2C19 variants to be associated with a diminished pharmacologic response. Specifically, compared with noncarriers, carriers of at least one copy of a loss-of-function CYP2C19 allele have ∼30% lower levels of active clopidogrel metabolite and ∼25% relatively less platelet inhibition with clopidogrel. Moreover, in patients treated with clopidogrel predominantly for percutaneous coronary intervention, carriers of 1 or 2 CYP2C19 loss-of-function alleles are at increased risk for major adverse cardiovascular outcomes, with an ∼1.5-fold increase in the risk of cardiovascular death, myocardial infarction, or stroke as well as an ∼3-fold increase in risk for stent thrombosis. Tripling the dose of clopidogrel in carriers of a CYP2C19 loss-of-function allele can achieve on-treatment platelet reactivity comparable to that seen with the standard 75 mg dose in wild-type individuals, but the impact on clinical outcomes remains unknown. Alternatively, 2 third-generation P2Y12 inhibitors are available: prasugrel and ticagrelor. These drugs are superior to clopidogrel in reducing ischemic outcomes and are unaffected by CYP2C19 loss-of-function alleles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Chou Tseng ◽  
Veronica Reinhart ◽  
Thomas A. Lanz ◽  
Mark L. Weber ◽  
Jincheng Pang ◽  
...  

AbstractSchizophrenia is a complex and heterogenous disease that presents with abnormalities in glutamate signaling and altered immune and inflammatory signals. Genome-wide association studies have indicated specific genes and pathways that may contribute to schizophrenia. We assessed the impact of the functional missense variant SLC39A8 (ZIP8)-A391T (ZIP8A391T) on zinc transport, glutamate signaling, and the neuroinflammatory response. The ZIP8A391T mutation resulted in reduced zinc transport into the cell, suggesting a loss in the tight control of zinc in the synaptic cleft. Electrophysiological recordings from perturbed neurons revealed a significant reduction in NMDA- and AMPA-mediated spontaneous EPSCs (sEPSCs) and a reduction in GluN2A and GluA1/2/3 receptor surface expression. All phenotypes were rescued by re-expression of wild-type ZIP8 (ZIP8WT) or application of the membrane-impermeable zinc chelator ZX1. ZIP8 reduction also resulted in decreased BBB integrity, increased IL-6/IL-1β protein expression, and increased NFκB following TNFα stimulation, indicating that ZIP8 loss-of-function may exacerbate immune and inflammatory signals. Together, our findings demonstrate that the A391T missense mutation results in alterations in glutamate and immune function and provide novel therapeutic targets relevant to schizophrenia.


2021 ◽  
Vol 22 (4) ◽  
pp. 2122
Author(s):  
Dohyeon Kim ◽  
Youngshin Kim ◽  
Sung Ho Yoon

Escherichia coli Nissle 1917 (EcN) is an intestinal probiotic that is effective for the treatment of intestinal disorders, such as inflammatory bowel disease and ulcerative colitis. EcN is a representative Gram-negative probiotic in biomedical research and is an intensively studied probiotic. However, to date, its genome-wide metabolic network model has not been developed. Here, we developed a comprehensive and highly curated EcN metabolic model, referred to as iDK1463, based on genome comparison and phenome analysis. The model was improved and validated by comparing the simulation results with experimental results from phenotype microarray tests. iDK1463 comprises 1463 genes, 1313 unique metabolites, and 2984 metabolic reactions. Phenome data of EcN were compared with those of Escherichia coli intestinal commensal K-12 MG1655. iDK1463 was simulated to identify the genetic determinants responsible for the observed phenotypic differences between EcN and K-12. Further, the model was simulated for gene essentiality analysis and utilization of nutrient sources under anaerobic growth conditions. These analyses provided insights into the metabolic mechanisms by which EcN colonizes and persists in the gut. iDK1463 will contribute to the system-level understanding of the functional capacity of gut microbes and their interactions with microbiota and human hosts, as well as the development of live microbial therapeutics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lucas D. Ward ◽  
Ho-Chou Tu ◽  
Chelsea B. Quenneville ◽  
Shira Tsour ◽  
Alexander O. Flynn-Carroll ◽  
...  

AbstractUnderstanding mechanisms of hepatocellular damage may lead to new treatments for liver disease, and genome-wide association studies (GWAS) of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum activities have proven useful for investigating liver biology. Here we report 100 loci associating with both enzymes, using GWAS across 411,048 subjects in the UK Biobank. The rare missense variant SLC30A10 Thr95Ile (rs188273166) associates with the largest elevation of both enzymes, and this association replicates in the DiscovEHR study. SLC30A10 excretes manganese from the liver to the bile duct, and rare homozygous loss of function causes the syndrome hypermanganesemia with dystonia-1 (HMNDYT1) which involves cirrhosis. Consistent with hematological symptoms of hypermanganesemia, SLC30A10 Thr95Ile carriers have increased hematocrit and risk of iron deficiency anemia. Carriers also have increased risk of extrahepatic bile duct cancer. These results suggest that genetic variation in SLC30A10 adversely affects more individuals than patients with diagnosed HMNDYT1.


2021 ◽  
pp. 1-10
Author(s):  
Sophie E. Legge ◽  
Marcos L. Santoro ◽  
Sathish Periyasamy ◽  
Adeniran Okewole ◽  
Arsalan Arsalan ◽  
...  

Abstract Schizophrenia is a severe psychiatric disorder with high heritability. Consortia efforts and technological advancements have led to a substantial increase in knowledge of the genetic architecture of schizophrenia over the past decade. In this article, we provide an overview of the current understanding of the genetics of schizophrenia, outline remaining challenges, and summarise future directions of research. World-wide collaborations have resulted in genome-wide association studies (GWAS) in over 56 000 schizophrenia cases and 78 000 controls, which identified 176 distinct genetic loci. The latest GWAS from the Psychiatric Genetics Consortium, available as a pre-print, indicates that 270 distinct common genetic loci have now been associated with schizophrenia. Polygenic risk scores can currently explain around 7.7% of the variance in schizophrenia case-control status. Rare variant studies have implicated eight rare copy-number variants, and an increased burden of loss-of-function variants in SETD1A, as increasing the risk of schizophrenia. The latest exome sequencing study, available as a pre-print, implicates a burden of rare coding variants in a further nine genes. Gene-set analyses have demonstrated significant enrichment of both common and rare genetic variants associated with schizophrenia in synaptic pathways. To address current challenges, future genetic studies of schizophrenia need increased sample sizes from more diverse populations. Continued expansion of international collaboration will likely identify new genetic regions, improve fine-mapping to identify causal variants, and increase our understanding of the biology and mechanisms of schizophrenia.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 513
Author(s):  
Grace H. Yang ◽  
Danielle A. Fontaine ◽  
Sukanya Lodh ◽  
Joseph T. Blumer ◽  
Avtar Roopra ◽  
...  

Transcription factor 19 (TCF19) is a gene associated with type 1 diabetes (T1DM) and type 2 diabetes (T2DM) in genome-wide association studies. Prior studies have demonstrated that Tcf19 knockdown impairs β-cell proliferation and increases apoptosis. However, little is known about its role in diabetes pathogenesis or the effects of TCF19 gain-of-function. The aim of this study was to examine the impact of TCF19 overexpression in INS-1 β-cells and human islets on proliferation and gene expression. With TCF19 overexpression, there was an increase in nucleotide incorporation without any change in cell cycle gene expression, alluding to an alternate process of nucleotide incorporation. Analysis of RNA-seq of TCF19 overexpressing cells revealed increased expression of several DNA damage response (DDR) genes, as well as a tightly linked set of genes involved in viral responses, immune system processes, and inflammation. This connectivity between DNA damage and inflammatory gene expression has not been well studied in the β-cell and suggests a novel role for TCF19 in regulating these pathways. Future studies determining how TCF19 may modulate these pathways can provide potential targets for improving β-cell survival.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 934
Author(s):  
Donato Gemmati ◽  
Giovanna Longo ◽  
Eugenia Franchini ◽  
Juliana Araujo Silva ◽  
Ines Gallo ◽  
...  

Inherited thrombophilia (e.g., venous thromboembolism, VTE) is due to rare loss-of-function mutations in anticoagulant factors genes (i.e., SERPINC1, PROC, PROS1), common gain-of-function mutations in procoagulant factors genes (i.e., F5, F2), and acquired risk conditions. Genome Wide Association Studies (GWAS) recently recognized several genes associated with VTE though gene defects may unpredictably remain asymptomatic, so calculating the individual genetic predisposition is a challenging task. We investigated a large family with severe, recurrent, early-onset VTE in which two sisters experienced VTE during pregnancies characterized by a perinatal in-utero thrombosis in the newborn and a life-saving pregnancy-interruption because of massive VTE, respectively. A nonsense mutation (CGA > TGA) generating a premature stop-codon (c.1171C>T; p.R391*) in the exon 6 of SERPINC1 gene (1q25.1) causing Antithrombin (AT) deficiency and the common missense mutation (c.1691G>A; p.R506Q) in the exon 10 of F5 gene (1q24.2) (i.e., FV Leiden; rs6025) were coinherited in all the symptomatic members investigated suspecting a cis-segregation further confirmed by STR-linkage-analyses [i.e., SERPINC1 IVS5 (ATT)5–18, F5 IVS2 (AT)6–33 and F5 IVS11 (GT)12–16] and SERPINC1 intragenic variants (i.e., rs5878 and rs677). A multilocus investigation of blood-coagulation balance genes detected the coexistence of FV Leiden (rs6025) in trans with FV HR2-haplotype (p.H1299R; rs1800595) in the aborted fetus, and F11 rs2289252, F12 rs1801020, F13A1 rs5985, and KNG1 rs710446 in the newborn and other members. Common selected gene variants may strongly synergize with less common mutations tuning potential life-threatening conditions when combined with rare severest mutations. Merging classic and newly GWAS-identified gene markers in at risk families is mandatory for VTE risk estimation in the clinical practice, avoiding partial risk score evaluation in unrecognized at risk patients.


Sign in / Sign up

Export Citation Format

Share Document