scholarly journals Broad spectrum antimicrobial activities from spore-forming bacteria isolated from the Vietnam Sea

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10117
Author(s):  
Khanh Minh Chau ◽  
Dong Van Quyen ◽  
Joshua M. Fraser ◽  
Andrew T. Smith ◽  
Thi Thu Hao Van ◽  
...  

The widespread occurrence of pathogenic bacteria resistant to last-line antibiotics has resulted in significant challenges in human and veterinary medicine. There is an urgent need for new antimicrobial agents that can be used to control these life threating pathogens. We report the identification of antimicrobial activities, against a broad range of bacterial pathogens, from a collection of marine-derived spore-forming bacteria. Although marine environments have been previously investigated as sources of novel antibiotics, studies on such environments are still limited and there remain opportunities for further discoveries and this study has used resources derived from an under-exploited region, the Vietnam Sea. Antimicrobial activity was assessed against a panel of Gram-positive and Gram-negative bacteria, including several multi-drug resistant pathogens. From a total of 489 isolates, 16.4% had antimicrobial activity. Of 23 shortlisted isolates with the greatest antimicrobial activity, 22 were Bacillus spp. isolates and one was a Paenibacillus polymyxa isolate. Most of the antimicrobial compounds were sensitive to proteases, indicating that they were proteins rather than secondary metabolites. The study demonstrated that marine bacteria derived from the Vietnam Sea represent a rich resource, producing antimicrobial compounds with activity against a broad range of clinically relevant bacterial pathogens, including important antibiotic resistant pathogens. Several isolates were identified that have particularly broad range activities and produce antimicrobial compounds that may have value for future drug development.

2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Risa Nofiani ◽  
Siti Nurbetty ◽  
Ajuk Sapar

<p>The increase of issues on the antibiotics resistant pathogenic bacteria has triggered high exploration for new antimicrobial compounds. One of the potential sources is sponge-associated bacteria. The aim of this study was to get sponge-associated bacteria extract containing antimicrobial activities. On the basis screening of antimicrobial activity using by streaking on agar medium, there were two potential isolates with antimicrobial activities namely LCS1 and LCS2. The two isolates were cultivated,then secondary metabolite product were extracted using methanol as a solvent. Minimum inhibitory concentrations (MICs) of extract LCS 1 were 1,000 μg/well for S. aureus, 950 μg/well for Salmonella sp.and 800 μg/well for Bacillus subtilis. Minimum inhibitory concentrations of extract LCS 2 were 500 μg/well for S. aureus, 1,050 μg/well for Salmonella sp., 750 μg/well for Bacillus subtilis, 350 μg/well for P. aeruginosa, 750 μg/sumur terhadap B. subtilis. Based on the MIC values, the two assay extracts have a relatively low antimicrobial activity.</p> <p>Keywords:Antimicrobial,Sponges associated bacteria,MICs</p>


Author(s):  
Risa Nofiani ◽  
Siti Nurbetty ◽  
Ajuk Sapar

The increase of issues on the antibiotics resistant pathogenic bacteria has triggered high exploration for new antimicrobial compounds. One of the potential sources is sponge-associated bacteria. The aim of this study was to get sponge-associated bacteria extract containing antimicrobial activities. On the basis screening of antimicrobial activity using by streaking on agar medium, there were two potential isolates with antimicrobial activities namely LCS1 and LCS2. The two isolates were cultivated,then secondary metabolite product were extracted using methanol as a solvent. Minimum inhibitory concentrations (MICs) of extract LCS 1 were 1,000 μg/well for S. aureus, 950 μg/well for Salmonella sp.and 800 μg/well for Bacillus subtilis. Minimum inhibitory concentrations of extract LCS 2 were 500 μg/well for S. aureus, 1,050 μg/well for Salmonella sp., 750 μg/well for Bacillus subtilis, 350 μg/well for P. aeruginosa, 750 μg/sumur terhadap B. subtilis. Based on the MIC values, the two assay extracts have a relatively low antimicrobial activity. Keywords:Antimicrobial,Sponges associated bacteria,MICs


Author(s):  
H. Tkachenko ◽  
L. Buyun ◽  
Z. Osadovskyy ◽  
M. Truhan ◽  
Ye. Sosnowski ◽  
...  

In the current investigation, screening of ethanolic extract obtained from Ficus lyrata leaves against pathogenic bacteria has been done in order to assess the antimicrobial activity aimed at detecting new sources of antimicrobial agents. The antimicrobial activity of the extract was determined using agar disc diffusion method. The antibacterial activity of leaf extract of F. lyrata was tested against human pathogenic bacteria — both Gram-positive (Staphylococcus aureus, methicillin-resistant S. aureus and Streptococcus pneumoniae) and Gram-negative strains (Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli). The results of this study provide evidence that the ethanolic extract of F. lyrata leaves has a mild antimicrobial activities, apparently, attributed to the presence of various secondary metabolites, which confirm the traditional use of this plant for the treatment of diseases caused by pathogens. These data allow us to suggest that the extracts of F. lyrata can be used to discover antibacterial substances for developing new pharmaceuticals to control clinically important pathogens responsible for severe disorders.


Author(s):  
HOSUR NARAYANAPPA VENKATESH ◽  
DEVIHALLI CHIKKAIAH MOHANA

Objective: The continuous emergence of multidrug resistance bacteria and yeast, and the negative impact of synthetic preservatives have led to an increased interest in the use of plant extracts as alternative antimicrobial agents. In the present investigation, the antimicrobial activity of successive solvent extracts of Albizia lebbeck and Solanum seaforthianum has been evaluated against human pathogenic bacteria and yeast. Methods: The disc diffusion method was employed for determination of the zone of inhibitions (ZOIs) and twofold broth dilution technique was employed for determination of minimal inhibitory concentrations, and minimal bactericidal/fungicidal concentrations. Results: Among the successive solvent extracts tested, methanol extracts of both A. lebbeck and S. seaforthianum showed highest antibacterial activity with ZOIs ranged between 10.0 and 20.4 mm at 1 mg/disc followed by ethanol (ZOIs 8.1–17.6 mm). The petroleum ether, toluene, and chloroform extracts showed the least activity. The highest activity was observed against Streptococcus faecalis, whereas the least activity was observed against Pseudomonas aeruginosa. Conclusion: The broad-spectrum antimicrobial activity of methanol extract of A. lebbeck and S. seaforthianum could be explored as antimicrobial agents for the management of pathogenic bacteria and yeast.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 257 ◽  
Author(s):  
Mickymaray

Traditional medicinal plants have been cultivated to treat various human illnesses and avert numerous infectious diseases. They display an extensive range of beneficial pharmacological and health effects for humans. These plants generally synthesize a diverse range of bioactive compounds which have been established to be potent antimicrobial agents against a wide range of pathogenic organisms. Various research studies have demonstrated the antimicrobial activity of traditional plants scientifically or experimentally measured with reports on pathogenic microorganisms resistant to antimicrobials. The antimicrobial activity of medicinal plants or their bioactive compounds arising from several functional activities may be capable of inhibiting virulence factors as well as targeting microbial cells. Some bioactive compounds derived from traditional plants manifest the ability to reverse antibiotic resistance and improve synergetic action with current antibiotic agents. Therefore, the advancement of bioactive-based pharmacological agents can be an auspicious method for treating antibiotic-resistant infections. This review considers the functional and molecular roles of medicinal plants and their bioactive compounds, focusing typically on their antimicrobial activities against clinically important pathogens.


Author(s):  
Nilushi Indika Bamunu Arachchige ◽  
Fazlurrahman Khan ◽  
Young-Mog Kim

Background: The treatment of infection caused by pathogenic bacteria becomes one of the serious concerns globally. The failure in the treatment was found due to the exhibition of multiple resistance mechanisms against the antimicrobial agents. Emergence of resistant bacterial species has also been observed due to prolong treatment using conventional antibiotics. To combat these problems, several alternative strategies have been employed using biological and chemically synthesized compounds as antibacterial agents. Marine organisms considered as one of the potential sources for the isolation of bioactive compounds due to the easily available, cost-effective, and eco-friendly. Methods: The online search methodology was adapted for the collection of information related to the antimicrobial properties of marine-derived compounds. These compound has been isolated and purified by different purification techniques, and their structure also characterized. Furthermore, the antibacterial activities have been reported by using broth microdilution as well as disc diffusion assays. Results: The present review paper describes the antimicrobial effect of diverse secondary metabolites which are isolated and purified from the different marine organisms. The structural elucidation of each secondary metabolite has also been done in the present paper, which will help for the in silico designing of the novel and potent antimicrobial compounds. Conclusion: A thorough literature search has been made and summarizes the list of antimicrobial compounds that are isolated from both prokaryotic and eukaryotic marine organisms. The information obtained from the present paper will be helpful for the application of marine compounds as antimicrobial agents against different antibiotic-resistant human pathogenic bacteria.


2019 ◽  
Vol 15 (1) ◽  
pp. 63-70
Author(s):  
Shiv Dev Singh ◽  
Arvind Kumar ◽  
Firoz Babar ◽  
Neetu Sachan ◽  
Arun Kumar Sharma

Background: Thienopyrimidines are the bioisoster of quinazoline and unlike quinazoline exist in three isomeric forms corresponding to the three possible types annulation of thiophene to the pyrimidine ring viz thieno[2,3-d] pyrimidine, thieno[3,2-d] pyrimidine and thieno[3,4-d]pyrimidine. Heterocyclic containing the thienopyrimidinone moiety exhibits various pronounced activities such as anti-hypertensive, analgesic and anti-inflammatory, antiviral, platelet aggregation inhibitory, antiprotozoal bronchodilatory, phosphodiesterase inhibitory, antihistaminic, antipsychotic and antimicrobial activity. Objective: Synthesis of novel 3(N,N-dialkylamino)alkyl/phenyl substituted thieno[2,3-d]pyrimidinones as H1-anti-histaminic and antimicrobial agents. Methods: A series of 3-[(N,N-dialkylamino)alkyl/phenyl]-2-(1H)thioxo-5,6,7,8-tetrahydrobenzo(b) thieno(2,3-d)pyrimidine-4(3H)-ones[4a-d], their oxo analogous [5a-d] and 3-[(N,N-dialkylamino)alkyl]- 2-chlorophenyl-5,6,7,8-tetrahydrobenzo(b)thieno(2,3-d)pyrimidine- 4 (3H)-ones[6a-d]derivative were synthesized from 2-amino-4,5,6,7-tetrahydrobenzo(b)thiophene-3-carboxylic acid by nucleophilic substitution of different N,N-dialkyl alkylene/phenylene diamines on activated 3-acylchloride moiety followed by cyclocondensation with carbon disulfide and ethanolic potassium hydroxide to get [4a-d] and in second reaction by condensation with 4-chlorobenzoyl chloride to get [6a-d] by single pot novel innovative route. The oxo analogous [5a-d] were prepared by treating derivatives [4a-d] with potassium permagnate in ethanolic KOH. The synthesized compound were evaluated for H1-antihistaminic and antimicrobial activities. Results: All synthesized compounds exhibited significant H1-antihistaminic activity by in vitro and in vivo screening methods and data were verified analytically and statistically. The compound 4a, 4b, 5a and 5b showed significant H1-antihistaminiic activity than the reference standard chlorpheniramine maleate. The compound 6d, 6c, 5c and 4c exhibited significant antimicrobial activity.


2021 ◽  
Vol 22 (7) ◽  
pp. 3299
Author(s):  
Damian Neubauer ◽  
Maciej Jaśkiewicz ◽  
Marta Bauer ◽  
Agata Olejniczak-Kęder ◽  
Emilia Sikorska ◽  
...  

Ultrashort cationic lipopeptides (USCLs) and gemini cationic surfactants are classes of potent antimicrobials. Our recent study has shown that the branching and shortening of the fatty acids chains with the simultaneous addition of a hydrophobic N-terminal amino acid in USCLs result in compounds with enhanced selectivity. Here, this approach was introduced into arginine-rich gemini cationic surfactants. L-cystine diamide and L-lysine amide linkers were used as spacers. Antimicrobial activity against planktonic and biofilm cultures of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) strains and Candida sp. as well as hemolytic and cytotoxic activities were examined. Moreover, antimicrobial activity in the presence of human serum and the ability to form micelles were evaluated. Membrane permeabilization study, serum stability assay, and molecular dynamics were performed. Generally, critical aggregation concentration was linearly correlated with hydrophobicity. Gemini surfactants were more active than the parent USCLs, and they turned out to be selective antimicrobial agents with relatively low hemolytic and cytotoxic activities. Geminis with the L-cystine diamide spacer seem to be less cytotoxic than their L-lysine amide counterparts, but they exhibited lower antibiofilm and antimicrobial activities in serum. In some cases, geminis with branched fatty acid chains and N-terminal hydrophobic amino acid resides exhibited enhanced selectivity to pathogens over human cells.


2019 ◽  
Vol 31 (12) ◽  
pp. 2740-2744
Author(s):  
Anil Verma ◽  
Vinod Kumar ◽  
Ramesh Kataria ◽  
Joginder Singh

Eleven acetohydrazide linked pyrazole derivatives were designed and synthesized via condensation of acetohyadrazide with different substituted formyl pyrazole derivatives under mild reaction conditions. Synthesized compounds were characterized on the basis of IR, NMR (1H & 13C) and mass spectrometry. The antimicrobial activities of all the compounds were screened against four bacterial and two fungal strains. Among the synthesized compounds, three compounds viz. 6b, 6c and 6d were found as efficient antimicrobial agents in reference to the standard drugs viz. ciprofloxacin and amphotericin-B. Further, structure-activity relationship (SAR) study revealed that electron-withdrawing group enhances the antimicrobial potential of synthesized derivatives as compared to other groups present in the ring. Hence, among compounds 6b-c, compound 6d could be explored further against other microbes to prove its vitality.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 712
Author(s):  
Ali Salama ◽  
Ammar Almaaytah ◽  
Rula M. Darwish

(1) Background: Antimicrobial resistance represents an urgent health dilemma facing the global human population. The development of novel antimicrobial agents is needed to face the rising number of resistant bacteria. Ultrashort antimicrobial peptides (USAMPs) are considered promising antimicrobial agents that meet the required criteria of novel antimicrobial drug development. (2) Methods: Alapropoginine was rationally designed by incorporating arginine (R), biphenylalanine (B), and naproxen to create an ultrashort hexapeptide. The antimicrobial activity of alapropoginine was evaluated against different strains of bacteria. The hemolytic activity of alapropoginine was also investigated against human erythrocytes. Finally, synergistic studies with antibiotics were performed using the checkerboard technique and the determination of the fractional inhibitory index. (3) Results: Alapropoginine displayed potent antimicrobial activities against reference and multi-drug-resistant bacteria with MIC values of as low as 28.6 µg/mL against methicillin-resistant S. aureus. Alapropoginine caused negligible toxicity toward human red blood cells. Moreover, the synergistic studies showed improved activities for the combined conventional antibiotics with a huge reduction in their antimicrobial concentrations. (4) Conclusions: The present study indicates that alapropoginine exhibits promising antimicrobial activity against reference and resistant strains of bacteria with negligible hemolytic activity. Additionally, the peptide displays synergistic or additive effects when combined with several antibiotics.


Sign in / Sign up

Export Citation Format

Share Document