scholarly journals miR-1293 acts as a tumor promotor in lung adenocarcinoma via targeting phosphoglucomutase 5

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12140
Author(s):  
Bing Chen ◽  
Shiya Zheng ◽  
Feng Jiang

Background Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer. Studies have found that miR-1293 is related to the survival of LUAD patients. Unfortunately, its role in LUAD remains not fully clarified. Methods miR-1293 expression and its association with LUAD patients’ clinical characteristics were analyzed in TCGA database. Also, miR-1293 expression was detected in LUAD cell lines. Cell viability, migration, invasion and expression of MMP2 and MMP9 were measured in LUAD cells following transfection with miR-1293 mimic or antagomir. Phosphoglucomutase (PGM) 5 was identified to be negatively related to miR-1293 in LUAD patients in TCGA database, and their association was predicated by Targetscan software. Hence, we further verified the relationship between miR-1293 and PGM5. Additionally, the effect and mechanism of miR-1293 were validated in a xenograft mouse model. Results We found miR-1293 expression was elevated, but PGM5 was decreased, in LUAD patients and cell lines. Higher miR-1293 expression was positively related to LUAD patients’ pathologic stage and poor overall survival. miR-1293 mimic significantly promoted, whereas miR-1293 antagomir suppressed the viability, migration, invasion, and expression of MMP2 and MMP9 in LUAD cells. PGM5 was a target of miR-1293. Overexpression of PGM5 abrogated the effects of miR-1293 on the malignant phenotypes of LUAD cells. Administration of miR-1293 antagomir reduced tumor volume and staining of Ki-67 and MMP9, but elevated PGM5 expression in vivo. Conclusions miR-1293 promoted the proliferation, migration and invasion of LUAD cells via targeting PGM5, which indicated that miR-1293 might serve as a potential therapeutic target for LUAD patients.

2020 ◽  
Author(s):  
Guangyan Kan ◽  
Ziyang Wang ◽  
Chunjie Sheng ◽  
Chen Yao ◽  
Yizhi Mao ◽  
...  

Abstract BackgroundLung cancer is one the most widely spread cancers in the world and half of the non-small cell lung cancers are lung adenocarcinoma (LUAD). Although there were several drugs been approved for LUAD therapy, a large portion of LUAD still can not be successfully treated due to lack of available therapeutic targets. Here, we investigated the oncogenic roles of DKC1 in LUAD and explored the potential mechanism and the possibility for LUAD therapy. MethodsWe analyzed Gene Expression Omnibus (GEO) and The Cancer Genome Atlas Program (TCGA) database and tissue microarray of LUAD. The expression of DKC1 and its correlation with prognosis were examined. In addition, Loss- and gain-of-function assays were used for oncogenic function of DKC1 both in vitro and in vivo.ResultsDKC1 is overexpressed in LUAD compared with normal tissues. High expression of DKC1 predicts the poor overall survival. Knockdown DKC1 in LUAD cell lines induced G1 phase arrest and inhibits cell proliferation. Ectopic expression of DKC1 could rescue the growth of LUAD cell lines. The abundance of DKC1 is positively correlated with TERC and TERT levels. DKC1 downregulation caused decreased TERC expression, reduced telomerase activity and shorten telomere, and thus eventually led to cell senescence and apoptosis.ConclusionsOur results show that high DKC1 expression indicates poor prognosis and DKC1 downregulation could induce telomere-related cell senescence and apoptosis. This study suggests that DKC1 could serve as a candidate diagnostic biomarker and therapeutic target for LUAD.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yuanyong Wang ◽  
Minge Ma ◽  
Chuan Li ◽  
Yuling Yang ◽  
Maolong Wang

GAS6 antisense RNA 1 (GAS6-AS1) is a long non-coding RNA involved in hepatocellular carcinoma and gastric cancer. However, the functional role of GAS6-AS1 in lung adenocarcinoma (LUAD) remains unclear. In the present study, qRT-PCR was used to measure the levels of GAS6-AS1, GIMAP6 and miR-24-3p expression in LUAD samples and cell lines. CCK-8 and colony formation assays were used to determine cell proliferation. Cell migration and invasion were evaluated using wound healing and transwell assays, respectively. The potential interactions between molecules were assessed using RNA immunoprecipitation and luciferase reporter assays. Western blot analysis was used to quantify protein expression. The anti-tumor effect of over-expressed GAS6-AS1 on LUAD was also examined in vivo in xenograft tumor experiments. The expression of GAS6-AS1 was notably downregulated in LUAD samples and cell lines and associated with a poor prognosis. GAS6-AS1 overexpression inhibited the migration and invasion of A549 and H1650 cells. Down-expressed GAS6-AS1 acted as a sponge for miR-24-3p and down-regulated the expression of its target, GTPase IMAP Family Member 6. These findings suggested that GAS6-AS1 might represent a potential diagnostic biomarker for LUAD.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Chenlong Li ◽  
Hongshan Zheng ◽  
Weiliang Hou ◽  
Hongbo Bao ◽  
Jinsheng Xiong ◽  
...  

Abstract Accumulating evidence indicates long noncoding RNAs (lncRNA) play a vital role in tumor progression. However, the role of linc00645-induced accelerated malignant behavior in glioblastoma (GBM) remains unknown. In the present study, linc00645 expression was significantly upregulated in GBM tissues and cell lines. High level of linc00645 was associated with poor overall survival in GBM patients. Knockdown of linc00645 suppressed the proliferation, stemness, migration, invasion, and reversed transforming growth factor (TGF)-β-induced motility of glioma cell lines. Furthermore, linc00645 directly interacted with miR-205-3p and upregulated of miR-205-3p impeded efficiently the increase of ZEB1 induced by linc00645 overexpression. Moreover, knockdown of linc00645 significantly suppressed the progression of glioma cells in vivo. miR-205-3p was a target of linc00645 and linc00645 modulates TGF-β-induced glioma cell migration and invasion via miR-205-3p. Taken together, our findings identified the linc00645/miR-205-3p/ZEB1 signaling axis as a key player in EMT of glioma cells triggered by TGF-β. These data elucidated that linc00645 plays an oncogenic role in glioma and it may serve as a prognostic biomarker and a potential therapeutic target for the treatment of glioma in humans.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Biyong Deng ◽  
Runsang Pan ◽  
Xin Ou ◽  
Taizhe Wang ◽  
Weiguo Wang ◽  
...  

Purpose. Osteosarcoma (Os) is the most frequent malignant tumor of the bone in the pediatric age group, and accumulating evidences show that lncRNAs play a key role in the development of Os. Thus, we investigated the role of RBM5-AS1 and its molecular mechanism. Methods. The expression of RBM5-AS1 in Os tissues and cell lines was detected by real-time polymerase chain reaction (QPCR). The effect of RBM5-AS1 on the proliferation of Os cells was detected using CCK8 assays and flow cytometry. The effect of RBM5-AS1 on the migration and invasion of Os cells was detected by transwell assays. And we performed QPCR and western blotting assays to investigate the relationship between RBM5-AS1 and RBM5. Finally, western blotting assays were performed to explore the mechanism of RBM5. Results. LncRNA RBM5-AS1 was overexpressed in the Os tissues and cell lines. And lncRNA RBM5-AS1 promoted Os cell proliferation, migration, and invasion in vitro and tumor growth in vivo. LncRNA RBM5-AS1 targets RBM5 in Os cells. Conclusion. To sum up, the results showed that lncRNA RBM5-AS1 promotes cell proliferation, migration, and invasion in Os.


Author(s):  
Ruimin Chang ◽  
Xiaoxiong Xiao ◽  
Yao Fu ◽  
Chunfang Zhang ◽  
Xiaoyan Zhu ◽  
...  

Lung adenocarcinoma (LUAD) is the main histological type of lung cancer, which is the leading cause of cancer-related deaths. Long non-coding RNAs (lncRNAs) were recently revealed to be involved in various cancers. However, the clinical relevance and potential biological roles of most lncRNAs in LUAD remain unclear. Here, we identified a prognosis-related lncRNA ITGB1-DT in LUAD. ITGB1-DT was upregulated in LUAD and high expression of ITGB1-DT was correlated with advanced clinical stages and poor overall survival and disease-free survival. Enhanced expression of ITGB1-DT facilitated LUAD cellular proliferation, migration, and invasion, and also lung metastasis in vivo. Knockdown of ITGB1-DT repressed LUAD cellular proliferation, migration, and invasion. ITGB1-DT interacted with EZH2, repressed the binding of EZH2 to ITGB1 promoter, reduced H3K27me3 levels at ITGB1 promoter region, and therefore activated ITGB1 expression. Through upregulating ITGB1, ITGB1-DT activated Wnt/β-catenin pathway and its downstream target MYC in LUAD. The expressions of ITGB1-DT, ITGB1, and MYC were positively correlated with each other in LUAD tissues. Intriguingly, ITGB1-DT was found as a transcriptional target of MYC. MYC directly transcriptionally activated ITGB1-DT expression. Thus, ITGB1-DT formed a positive feedback loop with ITGB1/Wnt/β-catenin/MYC. The oncogenic roles of ITGB1-DT were reversed by depletion of ITGB1 or inhibition of Wnt/β-catenin pathway. In summary, these findings revealed ITGB1-DT as a prognosis-related and oncogenic lncRNA in LUAD via activating the ITGB1-DT/ITGB1/Wnt/β-catenin/MYC positive feedback loop. These results implicated ITGB1-DT as a potential prognostic biomarker and therapeutic target for LUAD.


2020 ◽  
Author(s):  
Hongsheng Liu ◽  
Yingzhi Qin ◽  
Na Zhou ◽  
Dongjie Ma ◽  
Yingyi Wang

Abstract Background: Lung cancer is the most commonly diagnosed malignant tumor worldwide. Lung adenocarcinoma (LUAD) is the most common histological subtype in non-small cell lung cancer (NSCLC). The relationship between ZNF280A and LUAD has not been demonstrated and remains unclear. Methods: In this study, it was demonstrated that ZNF280A was upregulated in LUAD tissues compared with the normal tissues. Further investigations indicated that the overexpression/knockdown of ZNF280A could promote/inhibit proliferation, colony formation and migration of LUAD cells, while inhibiting/promoting cell apoptosis. Moreover, knockdown of ZNF280A could also suppress tumorigenicity of LUAD cells in vivo. RNA-sequencing followed by Ingenuity pathway analysis (IPA) was performed for exploring downstream of ZNF280A and identified EIF3C as the potential target. Results: Furthermore, our study revealed that knockdown of EIF3C could inhibit development of LUAD in vitro, and alleviate the ZNF280A overexpression induced promotion of LUAD. Conclusions: In conclusion, our study showed, as the first time, ZNF280A as a tumor promotor for LUAD, whose function was carried out probably through the regulation of EIF3C.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Chunfeng Liu ◽  
Lei Ren ◽  
Jun Deng ◽  
Songping Wang

Abstract Lung adenocarcinoma (LAD) is one of the most common malignancies that threats human health worldwide. Long non-coding RNAs (lncRNAs) have been reported to play significant roles in tumorigenesis and might be novel biomarkers and targets for diagnosis and treatment of cancers. TP73-AS1 is a newly discovered lncRNA involved in the tumorigenesis and development of several cancers. However, its role in LAD has not been investigated yet. In the present study, we first found that TP73-AS1 expression was markedly increased in LAD tissues and cell lines and its overexpression was strongly associated with poor clinical outcomes. Then the loss/gain-of-function assays elucidated that TP73-AS1 contributed to cell proliferation, migration, and invasion in vitro, and the in vivo experiments illustrated that its knockdown inhibited tumor growth and metastasis. What was more, we discovered that phosphoinositide 3-kinase and AKT (PI3K/AKT) pathway was activated both in LAD tissues and cell lines but inactivated under TP73-AS1 silence. Moreover, the activation of this pathway could rescue the inhibitory effects of TP73-AS1 suppression on LAD cellular processes partially. These data suggested that TP73-AS1 served as an oncogene in LAD partially through activating PI3K/AKT pathway and it could be a potential target for diagnosis and treatment of LAD.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Guangyan Kan ◽  
Ziyang Wang ◽  
Chunjie Sheng ◽  
Chen Yao ◽  
Yizhi Mao ◽  
...  

Abstract Background Lung cancer is one of the most widely spread cancers in the world and half of the non-small cell lung cancers are lung adenocarcinoma (LUAD). Although there were several drugs been approved for LUAD therapy, a large portion of LUAD still cannot be effectively treated due to lack of available therapeutic targets. Here, we investigated the oncogenic roles of DKC1 in LUAD and its potential mechanism and explored the possibility of targeting DKC1 for LUAD therapy. Methods The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas Program (TCGA) databases were used to examine the DKC1 transcript levels. Gene expression with clinical information from tissue microarray of LUAD were analyzed for associations between DKC1 expression and LUAD prognosis. In addition, loss- and gain-of-function assays were used for oncogenic function of DKC1 both in vitro and in vivo. Results DKC1 is overexpressed in LUAD compared with adjacent normal tissues. High expression of DKC1 predicts the poor overall survival. DKC1 knockdown in LUAD cell lines induced G1 phase arrest and inhibited cell proliferation. Ectopic expression of DKC1 could rescue the growth of LUAD cell lines. In addition, the abundance of DKC1 is positively correlated with telomerase RNA component (TERC) and telomerase reverse transcriptase (TERT) levels in LUAD. DKC1 downregulation resulted in decreased TERC expression, reduced telomerase activity and shorten telomere, and thus eventually led to cell senescence and apoptosis. Conclusions Our results show that high DKC1 expression indicates poor prognosis of LUAD and DKC1 downregulation could induce telomere-related cell senescence and apoptosis. This study suggests that DKC1 could serve as a candidate diagnostic biomarker and therapeutic target for LUAD.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Juan Wang ◽  
Yi Zhang ◽  
Fanghong Ge

Objective. Globally, the fatal form of lung cancer is non-small-cell lung cancer (NSCLC), and its most common subtype is lung adenocarcinoma (LUAD). In cancer development and progression, miRNAs play key roles primarily in interacting with cancer-related genes. The main focus of this research was to examine the biological roles of miR-186 in LUAD. Methods. We examined tissues of LUAD and lung cancer cell lines. The expressions of miR-186, Dicer1, Ki-67, and PCNA were determined by immunohistochemistry (IHC), real-time quantitative PCR (RT-PCR), and western blot assays. The CCK-8 and transwell assays were used to determine cell proliferation, migration, and invasion. To determine the association between miR-186 and Dicer1, a luciferase assay was used. Results. MiR-186 expression was found to be lower in LUAD tissues, and this was correlated to TNM stage and lymph node metastasis in LUAD patients. miR-186 upregulation significantly reduced the proliferation rate and the level of Ki67 and PCNA of LUAD cell lines HCC827 and A549. Transwell assay exhibited that miR-186 upregulation considerably reduced HCC827 and A549 cells' migration and invasion abilities. Furthermore, we also confirmed that Dicer1 was a direct target of miR-186. Importantly, Dicer1 overexpression abolished the suppression of miR-186 mimics on cell proliferation, migration, and invasion of HCC827 and A549 cells. Conclusion. These results indicated that the miR-186/Dicer1 pathway is critical for regulating LUAD cell proliferation, migration, and invasion.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Chun Cheng ◽  
Jun Yang ◽  
Si-Wei Li ◽  
Guofu Huang ◽  
Chenxi Li ◽  
...  

AbstractHistone deacetylases (HDACs) are involved in tumor progression, and some have been successfully targeted for cancer therapy. The expression of histone deacetylase 4 (HDAC4), a class IIa HDAC, was upregulated in our previous microarray screen. However, the role of HDAC4 dysregulation and mechanisms underlying tumor growth and metastasis in nasopharyngeal carcinoma (NPC) remain elusive. Here, we first confirmed that the HDAC4 levels in primary and metastatic NPC tissues were significantly increased compared with those in normal nasopharyngeal epithelial tissues and found that high HDAC4 expression predicted a poor overall survival (OS) and progression-free survival (PFS). Functionally, HDAC4 accelerated cell cycle G1/S transition and induced the epithelial-to-mesenchymal transition to promote NPC cell proliferation, migration, and invasion in vitro, as well as tumor growth and lung metastasis in vivo. Intriguingly, knockdown of N-CoR abolished the effects of HDAC4 on the invasion and migration abilities of NPC cells. Mechanistically, HDAC3/4 binds to the E-cadherin promoter to repress E-cadherin transcription. We also showed that the HDAC4 inhibitor tasquinimod suppresses tumor growth in NPC. Thus, HDAC4 may be a potential diagnostic marker and therapeutic target in patients with NPC.


Sign in / Sign up

Export Citation Format

Share Document