scholarly journals Extensive protein expression changes induced by pamidronate in RAW 264.7 cells as determined by IP-HPLC

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9202 ◽  
Author(s):  
Sang Shin Lee ◽  
Soung Min Kim ◽  
Yeon Sook Kim ◽  
Suk Keun Lee

Background Bisphosphonate therapy has become a popular treatment for osteoporosis, Paget’s disease, multiple myeloma, osteogenesis imperfecta, myocardial infarction, and cancer despite its serious side effects. Bisphosphonate-induced molecular signaling changes in cells are still not clearly elucidated. Methods As bisphosphonates are primarily engulfed by macrophages, we treated RAW 264.7 cells (a murine macrophage cell line) with pamidronate and investigated global protein expressional changes in cells by immunoprecipitation high performance liquid chromatography (IP-HPLC) using 218 antisera. Results Pamidronate upregulated proliferation-activating proteins associated with p53/Rb/E2F and Wnt/β-catenin pathways, but downregulated the downstream of RAS signaling, pAKT1/2/3, ERK-1, and p-ERK-1, and subsequently suppressed cMyc/MAX/MAD network. However, in situ proliferation index of pamidronate-treated RAW264.7 cells was slightly increased by 3.2% vs. non-treated controls. Pamidronate-treated cells showed increase in the expressions of histone- and DNA methylation-related proteins but decrease of protein translation-related proteins. NFkB signaling was also suppressed as indicated by the down-regulations of p38 and p-p38 and the up-regulation of mTOR, while the protein expressions related to cellular protection, HSP-70, NRF2, JNK-1, and LC3 were upregulated. Consequently, pamidronate downregulated the protein expressions related to immediate inflammation,cellular differentiation, survival, angiogenesis, and osteoclastogenesis, but upregulated PARP-1 and FAS-mediated apoptosis proteins. These observations suggest pamidronate affects global protein expressions in RAW 264.7 cells by stimulating cellular proliferation, protection, and apoptosis but suppressing immediate inflammation, differentiation, osteoclastogenesis, and angiogenesis. Accordingly, pamidronate appears to affect macrophages in several ways eliciting not only its therapeutic effects but also atypical epigenetic modification, protein translation, RAS and NFkB signalings. Therefore, our observations suggest pamidronate-induced protein expressions are dynamic, and the affected proteins should be monitored by IP-HPLC to achieve the therapeutic goals during treatment.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Evelyn Saba ◽  
Bo Ra Jeon ◽  
Da-Hye Jeong ◽  
Kija Lee ◽  
Youn-Kyoung Goo ◽  
...  

The beneficial health promoting effects of ginseng from vitalizing the body to enhancing long life have been well explored very rapidly in the past few years. Up till now many ginsenosides have been discovered for their marvelous therapeutic effects. However during past three years, a novel ginseng compound has been discovered, called gintonin, that differs from other ginsenosides on the basis of its signal transduction and chemical nature. Gintonin has been widely studied for its anti-Alzheimer’s disease activities and other neuropathies. However, its anti-inflammatory activity remained unexplored. In our study we have reported for the first time the anti-inflammatory activity of gintonin on RAW 264.7 cells. We found that gintonin potently suppresses the nitric oxide production without any cytotoxicity at given doses and also efficiently suppressed the levels of proinflammatory cytokines. Moreover, it mediaes its signal transduction via MAPK and NF-κB pathways and revives the levels of mir-34a and mir-93. These findings are valuable for the anti-inflammatory effects of this new compound with particular reference to microRNA involvement in the ginseng family.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lixiang Zhai ◽  
Tao Huang ◽  
Hai-tao Xiao ◽  
Pei-gen Wu ◽  
Cheng-yuan Lin ◽  
...  

Ulcerative colitis (UC) causes chronic inflammation and damage to the colonic mucosal layer. Recent studies have reported significant changes in phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) in UC patients and oral administration of PC has considerable therapeutic effects against UC, suggesting the metabolism of phosphatidylcholine may be involved in the UC development. Our previous work has demonstrated that berberine effectively suppresses inflammation and protects colonic mucosa injury in DSS-induced colitic mice. However, whether the therapeutic effects of berberine are attributed to its action on the PC metabolism remains unknown. In the present study, we have shown that berberine significantly reduces the lysophosphatidylcholine (LPC) levels in the sera of DSS-induced experimental colitis mice and LPS-stimulated macrophage RAW 264.7 cells. The cytosolic phospholipase A2a (PLA2G4A), an enzyme for hydrolyzing PC to LPC, was found to be up-regulated in the colon tissue of experimental colitis mice and inflamed macrophage RAW 264.7 cells. We then demonstrated berberine inhibits the phosphorylation of cytosolic phospholipase A2a (PLA2G4A) in the colon tissue of experimental colitis mice and inflamed macrophage RAW 264.7 cells. Subsequently, we revealed berberine suppressed the expression of pro-inflammatory factors including TNF-alpha and IL-6 through regulating PLA2G4A dysfunction in macrophage RAW 264.7 cells. Mechanistically, we found that berberine directly binds to PLA2G4A and inhibits MAPK/JNK signaling pathway to inhibit PLA2G4A activity in inflammatory status. Therefore, we concluded that berberine inhibits colonic PLA2G4A activity to ameliorate colonic inflammation in experimental colitic mice, suggesting modulation of the PC metabolism via PLA2G4A might be beneficial for establishing new therapies strategy for UC.


2021 ◽  
Author(s):  
Suk Keun Lee ◽  
Mi Hyun Seo ◽  
Dae Won Kim ◽  
Yeon Sook Kim

Although pentoxifylline (PTX) was identified as a competitive non-selective phosphodiesterase inhibitor, its pharmacological effect has not been clearly elucidated. The present study explored the effect of low dose 10 μg/mL PTX (therapeutic dose) compared to high dose 300 μg/mL PTX (experimental dose) in RAW 264.7 cells through immunoprecipitation-based high performance liquid chromatography (IP-HPLC), immunohistochemistry, and western blot. 10 μg/mL PTX increased the expression of proliferation (Ki-67, PCNA, cyclin D2, cdc25A), epigenetic modification (KDM4D, PCAF), protein translation (DOHH, DHPS, eIF5A1), RAS signaling (KRAS, pAKT1/2/3, PI3K), NFkB signaling (NFkB, GADD45, p38), protection (HSP70, SOD1, GSTO1/2), neuromuscular differentiation (NSEγ, myosin-1a, desmin), osteoblastic differentiation (BMP2, RUNX2, osterix), acute inflammation (TNFα, IL-1, CXCR4), innate immunity (β-defensin 1, lactoferrin, TLR-3, -4), cell-mediated immunity (CD4, CD8, CD80), while decreased the expression of ER stress (eIF2α, eIF2AK3, ATF6α), fibrosis (FGF2, CTGF, collagen 3A1), and chronic inflammation (CD68, MMP-2, -3, COX2) versus the untreated controls. 10 μg/mL PTX enhanced FAS-mediated apoptosis but diminished p53-mediated apoptosis, and downregulated many angiogenesis proteins (angiogenin, VEGF-A, and FLT4), but upregulated HIF1α, VEGFR2, and CMG2 reactively. Whereas, 300 μg/mL PTX consistently decreased proliferation, epigenetic modification, RAS and NFkB signaling, neuromuscular and osteoblastic differentiation, but increased apoptosis, ER stress, and fibrosis compared to 10 μg/mL PTX. These data suggest PTX has different biological effect on RWA 264.7 cells depending on the concentration of 10 μg/mL and 300 μg/mL PTX. The low dose 10 μg/mL PTX enhanced RAS/NFkB signaling, proliferation, differentiation, and inflammation, particularly, it stimulated neuromuscular and osteoblastic differentiation, innate immunity, and cell-mediated immunity, but attenuated ER stress, fibrosis, angiogenesis, and chronic inflammation, while the high dose 300 μg/mL PTX was found to alleviate the 10 μg/mL PTX-induced biological effects, resulted in the suppression of RAS/NFkB signaling, proliferation, neuromuscular and osteoblastic differentiation, and inflammation.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243975
Author(s):  
Yeon Sook Kim ◽  
Dae Won Kim ◽  
Seong-Gon Kim ◽  
Suk Keun Lee

4-Hexylresorcinol (4HR) is used as a food preservative and an ingredient of toothpaste and cosmetics. The present study was performed using 233 antisera to determine the changes in protein expression induced by 4HR in human umbilical cord vein endothelial cells (HUVECs), and evaluated the 4HR-induced effects in comparison with previous results (Kim et al., 2019). Similar to RAW 264.7 cells, 4HR-treated HUVECs showed decreases in the expression of the proliferation-related proteins, cMyc/MAX/MAD network proteins, p53/RB and Wnt/β-catenin signaling, and they showed inactivation of DNA transcription and protein translation compared to the untreated controls. 4HR upregulated growth factors (TGF-β1, β2, β3, SMAD2/3, SMAD4, HGF-α, Met, IGF-1) and RAS signaling proteins (RAF-B, p38, p-p38, p-ERK-1, and Rab-1), and induced stronger expression of the cellular protection-, survival-, and differentiation-related proteins in HUVECs than in RAW 264.7 cells. 4HR suppressed NFkB signaling in a manner that suggests potential anti-inflammatory and wound healing effects by reducing M1 macrophage polarization and increasing M2 macrophage polarization in both cells. 4HR-treated HUVECs tended to increase the ER stress mediators by upregulating eIF2AK3, ATF4, ATF6, lysozyme, and LC3 and downregulating eIF2α and GADD153 (CHOP), resulting in PARP-1/AIF-mediated apoptosis. These results indicate that 4HR has similar effects on the protein expression of HUVECs and RAW 264.7 cells, but their protein expression levels differ according to cell types. The 4HR-treated cells showed global protein expression characteristic of anticancer and wound healing effects, which could be alleviated simultaneously by other proteins exerting opposite functions. These results suggest that although 4HR has similar effects on the global protein expression of HUVECs and RAW 264.7 cells, the 4HR-induced molecular interferences in those cells are complex enough to produce variable protein expression, leading different cell functions. Moreover, HUVECs have stronger wound healing potential to overcome the impact induced by 4HR than RAW 264.7 cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xin Shi ◽  
Shaopin Zhu ◽  
Huiyi Jin ◽  
Junwei Fang ◽  
Xindan Xing ◽  
...  

Purpose: Adiponectin has been shown to exert potent anti-inflammatory activities in a range of systemic inflammatory diseases. This study aimed to investigate the potential therapeutic effects of KS23, a globular adiponectin-derived peptide, on endotoxin-induced uveitis (EIU) in rats and lipopolysaccharide (LPS)-stimulated mouse macrophage-like RAW 264.7 cells.Methods: EIU was induced in Lewis rats by subcutaneous injection of LPS into a single footpad. KS23 or phosphate-buffered saline (PBS) was administered immediately after LPS induction via intravitreal injection. Twenty-four hours later, clinical and histopathological scores were evaluated, and the aqueous humor (AqH) was collected to determine the infiltrating cells, protein concentration, and levels of inflammatory cytokines. In vitro, cultured RAW 264.7 cells were stimulated with LPS in the presence or absence of KS23, inflammatory cytokine levels in the supernatant, nuclear translocation of nuclear factor kappa B (NF-κB) subunit p65, and the expression of NF-kB signaling pathway components were analyzed.Results: KS23 treatment significantly ameliorated the clinical and histopathological scores of EIU rats and reduced the levels of infiltration cells, protein, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the aqueous humor. Consistently, KS23 decreased the expression of TNF-α and IL-6 in the supernatant of LPS-stimulated RAW 264.7 cells and inhibited the LPS-induced nuclear translocation of NF-κB p65 and the phosphorylation of IKKα/β/IκBα/NF-κB.Conclusion: The in vivo and in vitro results demonstrated the anti-inflammatory effects of the peptide KS23 and suggested that KS23 is a compelling, novel therapeutic candidate for the treatment of ocular inflammation.


2021 ◽  
Vol 11 (17) ◽  
pp. 8273
Author(s):  
Mi Hyun Seo ◽  
Mi Young Eo ◽  
Truc Thi Hoang Nguyen ◽  
Hoon Joo Yang ◽  
Soung Min Kim

Pentoxifylline (PTX) is a methylxanthine derivative that has been developed as an immunomodulatory agent and an improvement of microcirculation. Osteoradionecrosis (ORN) is a serious complication of radiation therapy due to hypovascularity. Coronavirus disease 2019 (COVID-19) has spread globally. Symptoms for this disease include self-limiting respiratory tract illness to severe pneumonia and acute respiratory distress. In this study, the effects of PTX on RAW 264.7 cells were investigated to reveal the possibility of PTX as a therapeutic agent for ORN and COVID-19. To reveal PTX effects at the cellular level, protein expression profiles were analyzed in the PTX-treated RAW 264.7 cells by using immunoprecipitation high-performance liquid chromatography (IP-HPLC). PTX-treated RAW 264.7 cells showed increases in immunity- and osteogenesis-related proteins and concurrent decreases in proliferation-, matrix inflammation-, and cellular apoptosis-related proteins expressions. The IP-HPLC results indicate that PTX plays immunomodulatory roles in RAW 264.7 cells by regulating anti-inflammation-, proliferation-, immunity-, apoptosis-, and osteogenesis-related proteins. These results suggest that PTX may be used as supplement medications for ORN as well as for COVID-19.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 909 ◽  
Author(s):  
Wen-Shuo Kuo ◽  
Chia-Tse Weng ◽  
Jian-Hua Chen ◽  
Chao-Liang Wu ◽  
Ai-Li Shiau ◽  
...  

Accumulated evidence suggests a pathogenic role of reactive oxygen species (ROS) in perpetually rheumatoid joints. Therefore, the application of radical scavengers for reducing the accumulation of ROS is beneficial for patients with rheumatoid arthritis (RA). We synthesized water-soluble fullerenols that could inhibit the production of ROS and applied intra-articular (i.a.) injection in an experimental arthritis model to examine the anti-arthritic effect of the synthesized compound. RAW 264.7 cells were used to examine the activity of the synthesized fullerenol. Collagen-induced arthritis (CIA) was induced in Sprague–Dawley rats by injecting their joints with fullerenol. The therapeutic effects were evaluated using the articular index as well as radiological and histological scores. Dose-dependent suppression of nitric oxide (NO) production caused by the fullerenol was demonstrated in the RAW 264.7 cell culture, thus confirming the ability of fullerenol to reduce ROS production. In the fullerenol-injected joints, articular indexes, synovial expression of ROS, histological and radiological scores, pannus formation, and erosion of cartilage and bone were all reduced. Moreover, interleukin (IL)-1β and vascular endothelial growth factor (VEGF) levels were reduced, and fewer von Willebrand factor (vWF)-stained areas were identified in the fullerenol-treated joints than in control joints. The i.a. injection of fullerenol for reducing ROS production can ameliorate arthritis in joints by suppressing pro-inflammatory cytokine production and the angiogenesis process. Thus, the i.a. injection of fullerenol for reducing the production of ROS can be used as a pharmacological approach for RA patients.


Sign in / Sign up

Export Citation Format

Share Document