scholarly journals Antimicrobial, Phytochemical Analysis and Molecular Docking (In-silico Approach) of Tithonia diversifolia (Hemsl.) A. Gray and Jatropha gossypiifolia L on Selected Clinical and Multi-Drug Resistant Isolates

Author(s):  
A. F. Okiti ◽  
O. T. Osuntokun

The aim of this study is to determine the zones of inhibition, phytochemical screening and molecular docking (In-silico Approach) of Tithonia diversifolia (Hemsl.) A. Gray and Jatropha gossypiifolia L against selected clinical and multi drug resistant isolates. Crude extraction of air dried leaves were carried out by soaking the plant in ethanol and ethyl acetate, standard agar diffusion method was used for sensitivity testing, minimum inhibitory concentration and minimum bactericidal concentration values were obtained by agar dilution method. The antimicrobial activity of the leaf extracts of T. diversifolia (Hemsl.) A. Gray and J. gossypiifolia L was assayed against Bacillus subtilis, Escherichia coli, Klebsiella pneumonia, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysentriae, Staphylococcus aureus, Streptococcus pyogenes, Candida albican and against multi drug resistant bacteria which are Acinetobacter baumannii, Enterobacter agglomerans, Proteus mirabilis, Providencia stuartii, Salmonella subsp 3b. Levofloxacin and fluconazole were the standard antibiotics used. Sensitivity test revealed the highest zone of inhibition observed for J. gossypiifolia L and T. diversifolia (Hemsl.) A. Gray against Candida albican with mean and standard deviation of 29±1.414 and 19.5±0.707 at 100 mg/ml respectively, while the least zone of inhibition was observed from the extracts of J. gossypiifolia L against Escherichia coli with 11.75±0.354 at 100 mg/ml. Both plant extracts showed antimicrobial activity against multi drug resistant isolates having zones of inhibition ranging from 0 to 15±1.414. The Minimum Inhibitory Concentration of the extracts ranges between 6.25 and 100 mg/ml as well as the Minimum Bactericidal Concentration. The qualitative and quantitative phytochemical analysis showed the presence of alkaloids, anthraquinone, cardiac glycosides, flavonoids, phlobotannins, reducing sugars saponins, steroids and tannins. Molecular docking of the phytochemicals of T. diversifolia (Hemsl.) A. Gray only was carried out using levofloxacin as template, which revealed the presence of compounds more effective in inhibiting DNA gyrase enzyme. Thus, the use of both plants as traditional medicine is justifiable and should be encouraged in the formulation and production of new antibiotics.

2022 ◽  
Author(s):  
Rajan Rolta ◽  
Shivani Shukla ◽  
Anjali Kashyap ◽  
Vikas Kumar ◽  
Anuradha Sourirajan ◽  
...  

Abstract Bistorta macrophylla (D. Don) Sojak. is a medicinal plant of high altitude and so far, not been scientifically explored? Since prehistoric times, B. macrophylla has been used to cure stomach pain, pyretic fever, flu, lungs infections, diarrhea, vomiting. The present research was aimed to examine the phytochemicals, antifungal, and synergistic potential of methanolic extracts of B. macrophylla. Methanolic extract of B. macrophylla was found to have high phenolic (191.18 ± 29.18 mg g−1 GAE) and flavonoid (26.71 ± 3.21 mg g−1 RE) content. Methanolic extract also demonstrate strong antifungal action with diameter of zone of inhibition of 17.5±0.5 mm (fungicidal) against both the strains of C. albicans (MTCC277 and ATCC90028). The minimal inhibitory concentration (MIC) of methanolic extract was found to be 62.5 µg ml−1 against C. albicans (MTCC277 and ATCC90028). In addition, the combination of methanolic extract of B. macrophylla with antifungal antibiotics (fluconazole and amphotericin B) showed synergistic interaction with MIC reduction from 4-128 folds against both candida strains. GC-MS analysis of methanolic extract revealed the presence of 15 major phytocompounds with area more than 1%. Molecular docking showed that sucrose and 9,9-Dimethoxybicyclo [ 3.3.1] nona-2,4-dione has highest binding energy of -6.3 and -5.1 KJ/mol against Cytochrome P450 14 alpha-sterol Demethylase (PDB ID: 1EA1) protein respectively. Combination of methanolic extract of B. macrophylla with antifungal antibiotics (fluconazole, amphotericin B) can be used to treat drug-resistant candida.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Padikkamannil Abishad ◽  
Pollumahanti Niveditha ◽  
Varsha Unni ◽  
Jess Vergis ◽  
Nitin Vasantrao Kurkure ◽  
...  

Abstract Background In the wake of emergence of antimicrobial resistance, bioactive phytochemical compounds are proving to be important therapeutic agents. The present study envisaged in silico molecular docking as well as in vitro antimicrobial efficacy screening of identified phytochemical ligands to the dispersin (aap) and outer membrane osmoporin (OmpC) domains of enteroaggregative Escherichia coli (EAEC) and non-typhoidal Salmonella spp. (NTS), respectively. Materials and methods The evaluation of drug-likeness, molecular properties, and bioactivity of the identified phytocompounds (thymol, carvacrol, and cinnamaldehyde) was carried out using Swiss ADME, while Protox-II and StopTox servers were used to identify its toxicity. The in silico molecular docking of the phytochemical ligands with the protein motifs of dispersin (PDB ID: 2jvu) and outer membrane osmoporin (PDB ID: 3uu2) were carried out using AutoDock v.4.20. Further, the antimicrobial efficacy of these compounds against multi-drug resistant EAEC and NTS strains was determined by estimating the minimum inhibitory concentrations and minimum bactericidal concentrations. Subsequently, these phytochemicals were subjected to their safety (sheep and human erythrocytic haemolysis) as well as stability (cationic salts, and pH) assays. Results All the three identified phytochemicals ligands were found to be zero violators of Lipinski’s rule of five and exhibited drug-likeness. The compounds tested were categorized as toxicity class-4 by Protox-II and were found to be non- cardiotoxic by StopTox. The docking studies employing 3D model of dispersin and ompC motifs with the identified phytochemical ligands exhibited good binding affinity. The identified phytochemical compounds were observed to be comparatively stable at different conditions (cationic salts, and pH); however, a concentration-dependent increase in the haemolytic assay was observed against sheep as well as human erythrocytes. Conclusions In silico molecular docking studies provided useful insights to understand the interaction of phytochemical ligands with protein motifs of pathogen and should be used routinely before the wet screening of any phytochemicals for their antibacterial, stability, and safety aspects.


Author(s):  
TITTY SULIANTI ◽  
NILAKESUMA DJAUHARI ◽  
BAMBANG NURSASONGKO

Objective: The aim is to compare the antimicrobial effects of papain and Papacarie with dilution and diffusion tests.Methods: There were two treatment groups and one Group control. The treatment group received papain and Papacarie, and the control groupreceived chlorhexidine, in five liquids with different concentrations of 0.5%, 0.25%, 0.125%, 0.0625%, and 0.03%. The dilution and diffusion testswere used to determine the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and zone of inhibition for eachtreatment material.Results: MICs of papain and Papacarie were 12.5%, indicating that at a concentration of 12.5%, the material can inhibit the growth of Streptococcusmutans. Papain does not have an MBC value but the Papacarie has an MBC at 25%, which indicating that at a concentration of 25%, Papacarie hasbactericidal effects on S. mutans. The zone of inhibition of papain was lower than Papacarie.Conclusion: Based on chemomechanical caries removal materials, the antimicrobial effects of Papacarie were better than those of papain.


2020 ◽  
Vol 7 (11) ◽  
pp. 276-284
Author(s):  
Garga M. A. ◽  
Manga S. B. ◽  
Rabah A.B. ◽  
Tahir H. ◽  
Abdullahi M. ◽  
...  

The aim of this study was to investigate the antibacterial effect and identify the phytochemical constituents of Moringa oleifera leaves and seeds extract on Staphylococcus aureus (S. aureus) clinical isolates using agar well diffusion method. The samples were collected from the premises of Usmanu Danfodiyo University, Sokoto. The Seeds and Leaves were collected fresh. They were extracted using methanol and ethyl acetate. Various concentrations from 100mg/ml to 500mg/ml were prepared. The test bacteria used is Staphylococcus aureus obtained from Microbiology laboratory of the Usmanu Danfodiyo University. The bacteria were re-identified using biochemical tests. The bacterial inoculums were standardized to McFarland scale 0.5. Zone of inhibition were read after 24 hours of incubation at 370C.The results of the antibacterial study revealed that the methanolic leaves extracts at 500 mg/ml had effect on S. aureus with zone of inhibition of 20mm. The methanolic seed extract have effect on S. aureus with zone of inhibition of 19.5mm. The MIC for the leave and seed extracts for Staphylococcus aureus was 250mg/ml. The MBC was 500mg/ml. The results of the phytochemical analysis revealed the presence of flavonoid, tannins, saponins, cardiac glycosides, alkaloids, volatile oil, saponin glycosides, and glycosides but anthraquinone and steroids were absent in the extracts. The zones of inhibition showed that both the methanolic and ethyl acetate extracts at 500mg/ml were active to all the tested bacteria. ANOVA and Duncan Multiple Mean Range test was used to analyze the data. Based on Duncan’s grouping, there is significant difference between the solvents and the concentrations used.


2011 ◽  
Vol 11 ◽  
pp. 2237-2242 ◽  
Author(s):  
S. C. Sati ◽  
Savita Joshi

The antibacterial activity of methanol, ethanol, chloroform, and hexane extracts of the leaves of Himalayan gymnospermous plantGinkgo bilobaL. was assessed against five animal and plant pathogenic strains (Agrobacterium tumefaciens, Bacillus subtilis, Escherichia coli, Erwinia chrysanthemi, and Xanthomonas phaseoli) employing disc-diffusion and broth-dilution assays. The methanol extract showed the highest activity (zone of inhibition of 15–21 mm) followed by ethanol (14–19 mm), chloroform (15–20 mm), and hexane (14–19 mm) extracts at 250 μg/mL. A minimum inhibitory concentration (MIC) of 7.8 μg/mL was found for the methanol extract against most of the pathogens tested.


2020 ◽  
Vol 12 (1) ◽  
pp. 71-75
Author(s):  
A.M. Aliyu ◽  
S.J. Oluwafemi ◽  
S. Kasim

All over the world, hundreds of plants have been identified based on researchers and experimental evidence as good sources of medicinal agents. The bioactive components (phytochemicals) of both the seeds and pulp of Cola milleni were extracted using ethanol as solvent. The bioactive components detected were alkaloids, tanins, saponins, cardiac glycosides, carbohydrates, sterols, resins and terpenes while Flavonoids, anthraquinones, anthracyanides and phenol were not detected for both the seed and pulps. Antimicrobial activity of the ethanol extract (Seed and pulp) against Staphylococcus aureus, Escherichia coli and Penicillium notatum was carried out using standard techniques. Staphylococcus aureus had the highest zone of inhibition for pulp having a range of 9.7mm±0.58mm - 19.7mm±2.52mm while Penicllium notatum had the least with 0.00mm. S.aureus also had the highest zone of inhibition range of 14.3mm±2.08mm - 21.3mm±1.53mm for the seed extract while penicillium had the least inhibition range of 5.0mm±1.00mm - 5.7mm±0.58. E.coli showed the highest minimum inhibitory concentration with ethanol extract of the pulp (160mg/ml) while penicillium notatum was not reactive. The minimum inhibitory concentration of seed against penillium notatum was the highest (160mg/ml) while staphylococcus aureus showed the lowest of 40mg/ml. The antimicrobial activity is as a result of the presence of phytochemicals detected, which suggest the use of the plant for the treatment of diseases caused by these organisms. Key words: Cola millenii, Phytochemical, Antimicrobial activity, Bacteria, Fungi


DICP ◽  
1989 ◽  
Vol 23 (6) ◽  
pp. 456-460
Author(s):  
Michael N. Dudley ◽  
Hilary D. Mandler ◽  
Kenneth H. Mayer ◽  
Stephen H. Zinner

Serum inhibitory and bactericidal titers were measured in nine healthy volunteers following single iv doses of ciprofloxacin 100, 150, and 200 mg. The median peak serum bactericidal titer (5 minutes following completion of a 30-minute infusion) against two highly susceptible strains of Escherichia coli ranged between 1:64 and 1:1024 and titers exceeded 1:8 for six hours for all dose levels. The bactericidal titers against two strains of Pseudomonas aeruginosa and a methicillin-resistant strain of Staphylococcus aureus were considerably lower, the median peak being 1:2 at all dose levels. Measured inhibitory and bactericidal titers at five minutes and one hour postinfusion were significantly greater than those predicted (measured serum ciprofloxacin concentration to minimum inhibitory concentration [MIC] or minimum bactericidal concentration [MBC]) for only one strain of E. coli. Intravenous doses of ciprofloxacin 100–200 mg produce high and sustained serum bactericidal titers against highly susceptible bacteria; considerably lower levels of activity are seen against bacteria having higher MICs and MBCs but still considered susceptible to the drug.


2021 ◽  
Vol 2 (2) ◽  
pp. 245-256
Author(s):  
Joy Nkeiruka Dike-Ndudim ◽  
Chiletam Nwadiuto Amadi ◽  
Chizaram Winners Ndubueze

The purpose of this work was to determine the antibacterial and antifungal activities of Datura stramonium on selected microorganisms, and to evaluate its phytochemical properties. The dry and wet leaves of D. stramonium were collected, extracted using ethanol and water, and assessed for antibacterial and antifungal activities at different concentrations (25mg, 12.5mg, 6.25mg, and 3.12mg) by disc diffusion method. The clinical isolates of Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Salmonela typhi, Aspergillus fumigatus and Candida albicans were used. The highest zone of inhibition for bacteria was shown with ethanolic dry extract (11.3±3.4) at 25mg/ml and the lowest with aqueous dry extract (4.0±1.4) at 25mg/ml against Escherichia coli. The highest zone of inhibition for fungi was shown with ethanolic dry extract (10±1.4) at 25mg/ml against Aspergillus fumigatus and the lowest was with ethanolic wet extract (2.0±0.0) at 25mg/ml against Candida albican.The phytochemical analysis result showed the presence of tannin (1.757%), phenol (1.149%), flavonoid (6.325%), alkaloid (8.552%), phytate (2.671%), and hydrogen cyanide (4.175%). The chromatographic analysis showed the presence of over 40 elements with the highest as hydrazine (41%) and methyl hydrogen disulphide (41%). In this study, D. stramonium leaf extracts showed significant antibacterial and antifungal activities due to the presence of the phytochemical and bioactive compounds. This upholds the native utility of this plant to treat bacterial and fungal infections. Conclusively, this plant would serve as treatment alternatives for infections and basis for sources of antimicrobial agent.


Infectio ◽  
2017 ◽  
Vol 21 (4) ◽  
Author(s):  
Daniel Felipe Vásquez-Giraldo ◽  
Gerardo Andrés Libreros-Zúñiga ◽  
María Del Pilar Crespo-Ortiz

Background: Bacterial responses to biocide exposure and its effects on survival and persistence remain to be studied in greater detail.Aim: To analyse the viability and survival of environmental isolates from household and hospital settings after biocide exposure.Methods: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of chlorhexidine (CHxG), benzalkonium chloride (BAC) and triclosan (TC) were determined in isolates of Pseudomonas aeruginosa, Acinetobacter baumannii complex and Escherichia coli collected from hospital and households environments. Viability was monitored after exposure and removal of biocides using agar cultures and flow cytometry.Findings: P. aeruginosa isolates showed greater tolerance for all biocides tested whereas A. baumannii complex and E. coli were less tolerant.When compared with reference strains, biocide tolerance was up to 8 to 13-fold higher for TC and BAC respectively. Flow cytometry showed that biocide exposure may induce viable but non-growing states in P. aeruginosa and E. coli isolates before becoming fully replicative. Changes in the susceptibility profile in one isolate of A. baumannii complex were observed after biocide exposure.Discussion: Bacteria isolates from hospital and households were able to recover after biocide exposure at bactericidal concentrations favouring persistence and spread of biocide-tolerant strains. This study reinforces that cleaning compliance should be monitored by non-culture based tests. Novel formulations in cleaning and disinfection protocols should be revisited in hospitals harbouring P. aeruginosa and A. baumannii multidrug resistant isolates.


2021 ◽  
Vol 4 (4) ◽  
pp. 42-49
Author(s):  
Murtala M. Namadina ◽  
A. M. Idris ◽  
U. Sunusi ◽  
M. H. Abdulrazak ◽  
F. M. Musa ◽  
...  

Albizia chevalieri Hams (Mimosaceae/Fabaceae), mostly found in the Northern Sahel Savannah region of Nigeria as well as in Nigér and Senegal is a tree of the acacia type with a long list of folklore therapeutic claims that include its use as purgative, taenicidal, cough remedy, dysentery, cancer, diabetes mellitus, tuberculosis and snake bite remedy. However, many bacterial species have been reported to develop resistance to antibiotics commonly prescribed for dental infections. Therefore, the need to search for natural products for remedy to this problem cannot be overemphasized. The stem was collected, dried and powdered. The powder was thereafter extracted with distilled water and subsequently with methanol. Phytochemical screening was carried out using standard methods. Agar well diffusion, agar dilution and spread plate methods were employed to determine the zone of inhibition, Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and rate of killing respectively. Phytochemical screening of methanol and aqueous extracts of Albizia chevalieri stem revealed the presence of phenol, alkaloid, saponins, tannins, steroids, triterpenes, flavonoids and carbohydrate as secondary metabolites. The two extracts showed broad spectrum of activity but the aqueous extract had larger zones of inhibition of 32 mm against S. mutans while methanol extract had higher zone of inhibition on S. aureus (24 mm). Low MIC and MBC values ranging from 6.25 mg/ml and 12.5 mg/ml respectively. The results obtained also provided scientific evidence for the use of A. chevalieri in folklore medicine in the treatment of tooth infections.


Sign in / Sign up

Export Citation Format

Share Document