scholarly journals Analysis of Effects of Foreign Clay and Local Clay Additives on Viscosity of Water Based Drilling Mud

Author(s):  
Cyprian Obinna Azinta ◽  
Gordian Onyebuchi Mbah ◽  
Monday Omotioma

This research compared the viscosity and other allied rheological properties of formulated water based drilling mud using local clay (that is modified with cheap and available additives) and foreign clay. These additives (such as xanthum gum, high viscosity polyanionic cellulose (PAC-R), modified natural polyanionic cellulose (PAC-L), potassium hydroxide (KOH), sodium carbonate (Na2CO3), and barite) are added to enhance/control the rheological properties (such as density, viscosity, yield point and gel strength) of the drilling mud. In this work, the viscosity and other allied rheological properties of water based mud were improved by the use of locally sourced clay from Awgu in Enugu State. The local clay was beneficiated/treated with hydrochloric acid (HCl) and characterized using x-ray fluorescence (XRF) spectrometer. The results of the characterization revealed that the local clay is more of silica which is typical of a kaolinitic clay. Local clay was examined as a possible replacement for foreign bentonite by comparing the rheological properties of water based mud (WBM) with bentonite and WBM with clay. Plastic viscosities (PV) of WBM with bentonite and WBM with clay were found to be 11.7 and 12.3 cP respectively. Other allied properties such as yield point, gel   strength, pH   and   mud   weight   of   WBM   with bentonite   and   WBM   with   clay    adequately   compared   closely.   Laboratory analyses   on the effects of three process variables (such as temperature, aging time and dosage of clay/bentonite) on the viscosity of the formulated muds were investigated. The laboratory results show that the readily available additives added to the local clay improved its viscosity and other allied rheological properties for effective drilling of oil and gas well when compared with foreign bentonite.

2020 ◽  
Vol 10 (8) ◽  
pp. 3437-3448
Author(s):  
Kevin C. Igwilo ◽  
N. Uwaezuoke ◽  
Emeka E. Okoro ◽  
Susan U. Iheukwumere ◽  
Julian U. Obibuike

Abstract Due to the difficulty that the compressive strength of cement slurries formulated with bentonite are not stable at elevated temperature conditions, in addition to other properties at high temperatures, Mucuna solannie commonly known as “Ukpo” was examined as an alternative. API standard procedures were employed throughout the laboratory measurements to determine overall rheological properties, compressive strength, thickening time, and free water of the extenders both at 150 °F (65.6 °C) and 200 °F (93.3 °C) BHCT. Mucuna solannie results gave compressive strength at 24 h as 952 psi (6.56E+6 Pa) and 900 psi (6.21E+6 Pa), free water values of 0 and 0.2 ml, yield point values of 67 lb/100ft2 (32.08 Pa) and 66 lb/100ft2 (31.60 Pa), and 10 min gel strength of 16 lb/100ft2 (7.66 Pa) and 22 lb/100ft2 (10.53 Pa). Bentonite additive gave 24 h compressive strength as 620 psi (4.27E+6 Pa) and 565 psi (3.9E+6 Pa), free water of 4.4 and 4.8 ml, yield point of 56 lb/100ft2 (26.81 Pa) and 46 lb/100ft2 (22.02 Pa), and 10 min gel strength of 16 lb/100ft2 (7.66 Pa) This showed that Mucuna solannie is a better alternative cement extender than Bentonite, especially where optimum free water and compressive strength are needed. Although it is found to be lacking in efficient plastic viscosity and thickening time, it can be resolved by the use of additives such as dispersant and accelerator to complement its properties.


Author(s):  
Tecla C. Biwott ◽  
Onyewuchi Akaranta ◽  
Ambrose K. Kiprop ◽  
Oriji Boniface

This paper aimed at improving the water-based drilling mud using Moringa oleifera (M. Oleifera) plant leaves. The rheological properties (plastic viscosity (PV), yield point (YP), and gel strength) of the mud were measured using standard procedures. The mud weight was not affected by M. oleifera concentration (10.03-10.63 pounds per gallon (ppg)). pH of the formulated mud decreased by 28% with increasing concentration of the M. oleifera leaves. The highest PV (33cP) was recorded by mud with 1% M. oleifera leaves at 50ºC while the least value (22cP) was given by control mud at 70ºC temperature. Highest YP (57 1b/100ft2) was recorded by mud sample with 4% concentration of M. oleifera leaves while 1% gave the lowest YP value of 91b/100ft2 at 30ºC and 49ºC respectively.  Gel strength at 10 seconds showed improvement with 2% concentration of leaves by recording maximum of 5 1 b/100 ft2 at 70ºC while the lowest gel strength was recorded by 1% leaves concentration at 49ºC. A good gel strength (30.21 b/100 ft2) at 10 minutes was recorded by mud sample with 3% leaves of M. oleifera at temperature of 30ºC. The results indicated that the M. oleifera leaves significantly improved the rheological properties of the mud. It was also observed that the mud weight of formulated muds with M. oleifera leaves were not affected which leads to stability of the wellbore if the formulation is used.  These great result calls for the need to use M. oleifera leaves to improve rheological properties of the drilling mud. An investigation of M. oleifera as fluid loss control should be done as well as need to carry out isolation and characterization of the active ingredients from M. oleifera leaves so as to establish the compound (s) associated with its activity in drilling mud.


Author(s):  
Tariq Ahmed ◽  
Nura Makwashi

The selection and control of a suitable drilling fluid is necessary to successfully drill an oil and gas well. The rheological properties of drilling fluids vary with changes in conditions such as time and temperature. Slight changes in these conditions can cause unpredictable and significant changes in the mud’s properties. This makes it necessary to study the rheology of drilling fluids and how it is affected by these changes. At the rig sites, tests are carried out by the mud engineers to ensure that the properties of the drilling fluids are within the required limits. Similar tests were carried out at the laboratory in this work to determine the plastic viscosity, yield point, gel strength of mud samples at different conditions of ageing time, temperature and concentration of Xanthan gum (X.G) used as an additive. The Experiments carried out were grouped into three. The first was done with the aim to further explain how the Bentonite and Sepiolite water-based drilling fluids behaves after been aged for certain period. The second sets of experiments were conducted to investigate how the rheological properties of water-based Bentonite muds are affected by different concentration of xanthan gum added as an additive to improve the muds properties and the last sets of experiments were done to investigate the ageing effect on Bentonite mud treated with 250mg/L xanthan gum. Effects of temperature were also considered in these experiments with a 10℃ variation in the first group and 20℃ in the other two groups between readings from 20℃ to 60℃ . Results obtained indicated that Sepiolite water-based drilling fluid offers better plastic viscosity and yield point as compared to Bentonite water-based drilling fluids. It was also found that the viscosity and yield point of Sepiolite, Bentonite and treated Bentonite muds decreases with increase ageing time and temperature while the gel strength increases with ageing time but similarly decreases with increase in temperature. In the second group, results obtained indicated that plastic viscosity, yield point and gel strength increases as concentration of xanthan gum increases, all of which decreases with increase in temperature.


2020 ◽  
Vol 4 (2) ◽  
pp. 18
Author(s):  
Bayan Qadir Sofy Hussein ◽  
Khalid Mahmood Ismael Sharbazheri ◽  
Nabil Adiel Tayeb Ubaid

The rheological properties of drilling fluids have an important role in providing a stable wellbore and eliminating the borehole problems. Several materials including polymers (xanthan gum) can be used to improve these properties. In this study, the effect of the local Katira, as a new polymer, on the rheological properties of the drilling fluids prepared as the bentonite-water-based mud has been investigated in comparison with the conventional xanthan gum. Experimental work was done to study of rheological properties of several gums such as, local katira gum, and xanthan gum bentonite drilling mud. Different samples of drilling fluids are prepared adding the xanthan gum and local katira to the base drilling fluid at different concentrations using Hamilton Beach mixer. The prepared samples are passed through rheological property tests including the apparent viscosity, plastic viscosity, and yield point (YP) under different temperature conditions. The obtained results show that the viscosity is increased from 5 to 8.5 cp and YP is increased from 18.5 to 30.5 lb/100 ft2, with increasing the concentration of the xanthan gum from 0.1 to 0.4. However, the effect of the local katira in increasing the viscosity and YP is lower compared with the xanthan gum, which are ranged between 5–6 cp and 18.5–20.5 cp.


2021 ◽  
Vol 69 (2) ◽  
pp. 53
Author(s):  
Onyeogulu Chibuike ◽  
Ibezim-Ezeani Millicent Uzoamaka ◽  
Akaranta Onyewuchi

The rheological behaviour of drilling mud formulated with sodium hydroxide extracts of Bitter-leaf (BL), Pawpaw (PL), Almond (AL) and Moringa (ML) leaves applied as surfactant (emulsifiers) was studied. The rheological properties (plastic viscosity (PV), yield point (YP), and gel strength) of the mud were measured using standard procedures. The mud specific gravity for BLEM and PLEM was observed to give same value (1.08) as that of the C1 mud. pH of the formulated mud were all alkaline and in the order BLEM (8.6) > PLEM (8.3) > ALEM (8.3) > C1(8.3) > MLEM (8.2) > C2 (8.2). The highest PV (19cP) was recorded by PLEM at 30ºC, while the least value (6cP) was by C2 at 60ºC temperatures. Highest YP (70 1b/100ft2) was recorded by C2 while the lowest YP value (22 1b/100ft2) by C1 both at 30ºC. Gel strength at 10 seconds showed reduction in value as the temperature increased for MLEM, ALEM, C2 and C1 formulated mud and recorded maximum of 45 1b/100 ft2 at 30ºC for C2 while the lowest gel strength was reported by C1 at 60ºC. The results obtained from the study showed that the various alkaline plant extracts used as emulsifying agent have no negative effect on the rheological properties of the formulated mud, rather it enhances the rheological properties even after aging of the mud at 65oC. These results therefore, show the need to use the various plant extracts as alternative additive (emulsifying agent) in the formulation of water based drilling mud.


2019 ◽  
Vol 11 (23) ◽  
pp. 6714 ◽  
Author(s):  
Hany Gamal ◽  
Salaheldin Elkatatny ◽  
Salem Basfar ◽  
Abdulaziz Al-Majed

The design of drilling fluids is very important for the drilling operation success. The rheological properties play a key role in the performance of the drilling fluid. Therefore, studying the mud rheological properties of the water-based drilling fluid based on bentonite is essential. The main objectives of this study are to address the effect of pH changes on the rheological and filtration properties of the water-based drilling fluid based on bentonite and to provide a recommended pH range for this drilling fluid for a safe and high-performance drilling operation. Different samples of the water-based drilling fluid based on bentonite with different pH values were prepared, and the rheological properties such as plastic viscosity, yield point, and gel strength were measured. After that, the filtration test was performed under 300 psi differential pressure and 200 °F. The pH for the water-based drilling fluid based on bentonite significantly affects the mud rheology. The shear stress and shear rate relation were varying with the change in the pH. Increasing the pH from 8 to 12 resulted in decreasing the plastic viscosity by 53% and the yield point by 82%, respectively. The ratio of yield point / plastic viscosity was 1.4 for pH of 8 while it decreased to 0.5 for a pH of 11 and 12. There was a significant decrease in the gel strength readings by increasing the pH. The filtrate volume and filter cake thickness increased by increasing pH. The filtration volume increased from 9.5 cm3 to 12.6 cm3 by increasing the pH from 9 to 12. The filter cake thickness was 2 mm at 9 pH, while it was increased to 3.6 mm for 12 pH. It is recommended from the results to keep the pH of water-based drilling fluid based on bentonite in the range of 9 to 10 as it provides the optimum mud rheological and filtration properties. The findings of this study illustrated that keeping the pH in the range of 9 to 10 will reduce the plastic viscosity that will help in increasing the rate of penetration and reducing the required pump pressure to circulate the mud to the surface which will help to sustain the drilling operation. In addition, reducing the filtrate volume will produce a thin filter cake which will help in avoiding the pipe sticking and protect the environment. In general, optimizing the pH of the water-based drilling fluid based on bentonite in the range of 9 to 10 will improve the drilling operation and minimize the total cost.


2020 ◽  
pp. 70-74
Author(s):  
V.V. Guliyev ◽  
◽  
◽  

Currently, a great number of drilling fluids with different additives are used all over the world. Such additives are applied to control the properties of the drilling mud. The main purpose for controlling is to achieve more effective and safe drilling process. This research work aims to develop Water-Based Mud (WBM) with a Coefficient of Friction (CoF) as low as Oil-Based Mud (OBM) and better rheological properties. As it is known, produced CoF by WBM is higher than OBM, which means high friction between wellbore or casing and drill string. It was the reason for studying the effect of nanosilica on drilling fluid properties such as lubricity, rheological parameters and filtrate loss volume of drilling mud. The procedures were carried out following API RP 13B and API 13I standards. Five concentrations of nanosilica were selected to be tested. According to the results obtained, it was defined that adding nanosilica into the mud decreases CoF of basic WBM by 26 % and justifies nanosilica as a good lubricating agent for drilling fluid. The decreasing trend in coefficient of friction and plastic viscosity for nanosilica was obtained until the concentration of 0.1 %. This reduction is due to the shear thinning or pseudoplastic fluid behavior. After 0.1 %, an increase at PV value trend indicates that it does not follow shear thinning behavior and after reaching a certain amount of dissolved solids in the mud, it acts like normal drilling fluid. The yield point of the mud containing nanoparticles was higher than the basic one. Moreover, a growth in the concentration leads to an increase in yield point value. The improvement of this fluid system cleaning capacity via hydraulics modification and wellhole stability by filter cake endurance increase by adding nanosilica is shown as well. The average well construction data of “Neft Dashlary” field was used for the simulation studies conducted for the investigation of hydraulics parameters of reviewed fluids for all series of experiments. The test results were accepted reliable in case of at least 3 times repeatability.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
David Ekuma ◽  
Ikechukwu Okafor ◽  
Innocent Nweze

Abstract Drilling fluid are complex fluids consisting of several additives. These additives are added to enhance and control the rheological properties (such as viscosity, gel strength and yield point) of the mud. These properties are controlled for effective drilling of a well. This research work is focused on determining the rheological behavior of drilling mud using industry-based polymer and Irvingia Gabonensis (ogbono) as viscosifiers. Water based muds were formulated from the aforementioned locally sourced viscosifier and that of the conventional used viscosifier (Carboxylmetyl cellulose, CMC). Laboratory tests were carried out on the different muds formulated and their rheological properties (such as yield stress, shear stress, plastic viscosity and shear rate) are evaluated. The concentration of the viscosifiers were varied. The expected outcome of the research work aims at lowering the total drilling cost by reducing the importation of foreign polymer which promotes the development of local content in the oil and gas industry. The research compares the rheology of mud samples and the effect of varying the concentration (2g, 4g, 6g, 8g, and 10g) of both CMC and Ogbono and determining the changes in their rheological properties. The total volume of each mud sample is equivalent to 350ml which represent one barrel (42gal) in the lab. From the result, at concentration of 2g, the ogbono mud has a better rheology than the CMC mud, but at a concentration above 2g, CMC mud shows a better rheology than ogbono mud, that is, as the concentration of CMC is increased, the rheological properties of the mud increased while as the concentration of ogbono is increased the rheological properties decreased. The viscosity of the drilling fluid produced from the ogbono were lower than that of CMC, it could be used together with another local product such as cassava starch, offor or to further improve the rheology and then be a substitute to the conventional viscosifiers.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


2020 ◽  
Vol 5 (10) ◽  
pp. 1269-1273
Author(s):  
Godwin Chukwuma Jacob Nmegbu ◽  
Bright Bariakpoa Kinate ◽  
Bari-Agara Bekee

The extent of damage to formation caused by water based drilling mud containing corn cob treated with sodium hydroxide to partially replace polyanionic cellulose (PAC) as a fluid loss control additive has been studied. Core samples were obtained from a well in Niger Delta for this study with a permeameter used to force the drilling mud into core samples at high pressures. Physio-chemical properties (moisture content, cellulose and lignin) of the samples were measured and the result after treatment showed reduction. The corn cob was combined with the PAC in the ratio of 25-75%, 50-50% and 75-25% in the mud. Analyzed drilling mud rheological properties such as plastic viscosity, apparent viscosity, yield point and gel strength all decreased as percentage of corn cob increased in the combination and steadily decreased as temperature increased to 200oF. Measured fluid loss and pH of the mud showed an increase in fluid loss and pH in mud sample with 100% corn cob. The extent of formation damage was determined by the differences in the initial and final permeability of the core samples. Experimental data were used to develop analytical models that can serve as effective tool to predict fluid loss, rheological properties of the drilling mud at temperature up to 200oF and percentage formation damage at 100 psi.


Sign in / Sign up

Export Citation Format

Share Document