Utilizing Pyrolytic Biomass Products for Rubber Reinforcement: Effect of the Silica Content in Biomass Feed Stocks

2021 ◽  
Vol 36 (5) ◽  
pp. 620-629
Author(s):  
L.-Y. Yu ◽  
B.-C. Xue ◽  
M.-M. Qian ◽  
Y.-X. Li ◽  
Z.-X. Chen ◽  
...  

Abstract Biochar has been exploited as a substitution of carbon black in the rubber industry and various biochars exhibit diverse reinforcing abilities due to the different compositions. This work aims at studying the effect of silica on the modification process and reinforcing performance through the comparison of three biochars with different contents of silica, pyrolytic rice husks (PRH, 34 wt%), pyrolytic bamboos (PB, 7 wt%) and pyrolytic corn cobs (PC, 0.4 wt%). The results reveal that PRH requires higher rotational speed (300 min–1) than PB (200 min–1) and PC (200 min–1) to achieve similar particle sizes during the ball milling process because of the aggregations of higher silica content. Meanwhile, silica-rich pyrolytic biomass exhibits enhanced reinforcement on mechanical properties and thermal stability of rubber, and the elongation at break of vulcanizates continues to improve with increasing silica contents. Combined with the energy consumption and reinforcement, biochar containing a little amount of silica is more suitable to be widely used as bio-filler in rubber industry. This work should serve as a valuable reference to select appropriate biochar for the production of bio-fillers with high reinforcement.

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1502
Author(s):  
Eliezer Velásquez ◽  
Sebastián Espinoza ◽  
Ximena Valenzuela ◽  
Luan Garrido ◽  
María José Galotto ◽  
...  

The deterioration of the physical–mechanical properties and loss of the chemical safety of plastics after consumption are topics of concern for food packaging applications. Incorporating nanoclays is an alternative to improve the performance of recycled plastics. However, properties and overall migration from polymer/clay nanocomposites to food require to be evaluated case-by-case. This work aimed to investigate the effect of organic modifier types of clays on the structural, thermal and mechanical properties and the overall migration of nanocomposites based on 50/50 virgin and recycled post-consumer polypropylene blend (VPP/RPP) and organoclays for food packaging applications. The clay with the most hydrophobic organic modifier caused higher thermal stability of the nanocomposites and greater intercalation of polypropylene between clay mineral layers but increased the overall migration to a fatty food simulant. This migration value was higher from the 50/50 VPP/RPP film than from VPP. Nonetheless, clays reduced the migration and even more when the clay had greater hydrophilicity because of lower interactions between the nanocomposite and the fatty simulant. Conversely, nanocomposites and VPP/RPP control films exhibited low migration values in the acid and non-acid food simulants. Regarding tensile parameters, elongation at break values of PP film significantly increased with RPP addition, but the incorporation of organoclays reduced its ductility to values closer to the VPP.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2903
Author(s):  
Juvenal Giogetti Nemaleu Deutou ◽  
Rodrigue Cyriaque Kaze ◽  
Elie Kamseu ◽  
Vincenzo M. Sglavo

The present project investigated the thermal stability of cold-setting refractory composites under high-temperature cycles. The proposed route dealt with the feasibility of using fillers with different particle sizes and studying their influence on the thermo-mechanical properties of refractory geopolymer composites. The volumetric shrinkage was studied with respect to particle sizes of fillers (80, 200 and 500 µm), treatment temperature (1050–1250 °C) and amount of fillers (70–85 wt.%). The results, combined with thermal analysis, indicated the efficiency of refractory-based kyanite aggregates for enhancing thermo-mechanical properties. At low temperatures, larger amounts of kyanite aggregates promoted mechanical strength development. Flexural strengths of 45, 42 and 40 MPa were obtained for geopolymer samples, respectively, at 1200 °C, made with filler particles sieved at 80, 200 and 500 µm. In addition, a sintering temperature equal to 1200 °C appeared beneficial for the promotion of densification as well as bonding between kyanite aggregates and the matrix, contributing to the reinforcement of the refractory geopolymer composites without any sign of vitrification. From the obtained properties of thermal stability, good densification and high strength, kyanite aggregates are efficient and promising candidates for the production of environmentally friendly, castable refractory composites.


2017 ◽  
Vol 735 ◽  
pp. 153-157
Author(s):  
Wasinee Pinpat ◽  
Wirunya Keawwattana ◽  
Siree Tangbunsuk

Silica has been used as reinforcing filler in natural rubber for a period of time as it results in excellent properties for NR vulcanizes. Rice husk ash (RHA), bagasse ash (BA), and oil palm ash (OPA) obtained from agricultural wastes are mainly composed of silica in the percentage of 80.00%, 57.33%, and 40.20% by weight, respectively. The effect of these fillers on cure characteristics and mechanical properties of natural rubber materials at fixed silica content at 35 parts per hundred of rubber (phr) were investigated. The results indicated that ashes showed greater cure time compared to that of the silica. The incorporation of ashes into natural rubber gradually improved compression set but significantly decreased tensile strength, elongation at break, and resilience. Moreover, young's modulus increased, while hardness showed no significant change with the addition of ashes. Overall results indicated that ashes could be used as cheaper fillers for natural rubber materials where improved mechanical properties were not critical.


2013 ◽  
Vol 773 ◽  
pp. 668-672
Author(s):  
Jun Liang Liu ◽  
Ping Liu ◽  
Xiao Qiang Tang ◽  
Dong Zeng ◽  
Xing Kai Zhang ◽  
...  

In this paper, the blends of natural rubber with waste ground rubber powders have been prepared by mechano-chemical activation method. The influences of particle sizes on both processing performances and mechanical properties have been investigated. The results indicated that: the blends with waste ground rubber powders of smaller particle sizes approached to higher surface tensile and easily mechano-chemical activation, which led to the formation of complete homogenous re-vulcanization cross-linking structure and resulted in the improvements of the whole performances of the final products. The tensile strength, the elongation at break and tear strength approached to the highest value of 20.7MPa, 530% and 33.0 kN/m as the 100mesh waste ground rubber powders were used as the starting materials.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yueyun Zhou ◽  
Lifa Luo ◽  
Wenyong Liu ◽  
Guangsheng Zeng ◽  
Yi Chen

To overcome the poor toughness of PC/PLA blends due to the intrinsic properties of materials and poor compatibility, thermoplastic urethane (TPU) was added to PC/PLA blends as a toughener; meantime, catalyst di-n-butyltin oxide (DBTO) was also added for catalyzing transesterification of components in order to modify the compatibility of blends. The mechanical, thermal, and rheological properties of blends were investigated systematically. The results showed that the addition of TPU improves the toughness of PC/PLA blends significantly, with the increase of TPU, the elongation at break increases considerably, and the impact strength increases firstly and then falls, while the tensile strength decreases significantly and the blends exhibit a typical plastic fracture behavior. Meantime, TPU is conducive to the crystallinity of PLA in blends which is inhibited seriously by PC and damages the thermal stability of blends slightly. Moreover, the increased TPU makes the apparent viscosity of blends melt decrease due to the well melt fluidity of TPU; the melt is closer to the pseudoplasticity melt. Remarkably, the transesterification between the components improves the compatibility of blends significantly, and more uniform structure results in a higher crystallinity and better mechanical properties.


Nanomaterials ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 15 ◽  
Author(s):  
Yongsheng Zhang ◽  
Jun Ma ◽  
Yao Bai ◽  
Youwei Wen ◽  
Na Zhao ◽  
...  

Petroleum depletion and climate change have inspired research on bio-based polymers and CO2 capture. Tung-oil-based polyols were applied to partially replace polyether-type polyols from petroleum for sustainable polyurethane. Tung-oil-based polyurethane (TBPU), was prepared via a two-step polycondensation, that is, bulk prepolymerization and chain extension reaction. The graphene oxide (GO) was prepared via Hummer’s method. Then, TBPU was composited with the GO at different ratios to form a TBPU/GO hybrid film. The GO/TBPU films were characterized by fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA) and scanning electron microscope (SEM), followed by the measurement of mechanical properties and gas permeability. The results showed that the addition of tung-oil-based polyols enhanced the glass transition temperature and thermal stability of TBPU. The mechanical properties of the hybrid film were significantly improved, and the tensile strength and elongation at break were twice as high as those of the bulk TBPU film. When the GO content was higher than 2.0%, a brittle fracture appeared in the cross section of hybrid film. The increase of GO content in hybrid films improved the selectivity of CO2/N2 separation. When the GO content was higher than 0.35%, the resulting GO agglomeration constrained the gas separation and permeation properties.


2011 ◽  
Vol 221 ◽  
pp. 278-282 ◽  
Author(s):  
Xian Zhong Mo ◽  
Yu Xiang Zhong ◽  
Xiang Qi ◽  
Chen Mo

Thermoplastic tapioca starch(TPS) was prepared with the mixed plasticizer, formamide and urea (mass ratio 2:1). The introduction of magnesium hydroxide(MH) in TPS could rapidly increase processing torque on a high level(40~60Nm) at 130°C. Studies in the dependence of mechanical properties of thermoplastic tapioca starch/magnesium hydroxide composites(MHTPS) on the MH content from 0 to 20phr, the initial tensile strength and elastic modulus were increased up to the maximum 3247 MPa and 48.5 MPa at 20phr MH content respectively, while the elongation at break was reduced from 72% to 2.5%. TG mass loss curves showed that thermal stability of this composites had great improved under 500°C. The limited oxygen index(LOI) of MHTPS reached to 31% while the content of Mg(OH)2 was 20phr, and then the result of vertical flame testing achieved UL94 V-0 level.


2021 ◽  
Vol 19 (1) ◽  
pp. 1216-1224
Author(s):  
Nur Ain Mohd Radzali ◽  
Norsyahidah Mohd Hidzir ◽  
Irman Abdul Rahman ◽  
Abdul Khaliq Mokhtar

Abstract Evaluating the mechanical properties of expanded polytetrafluoroethylene (ePTFE) is essential to measure its resistance to permanent deformation from an applied force. These mechanical ePTFE properties must be comparable to the properties of real tissue. Various hydrophilic comonomers 2-hydroxyethyl methacrylate (HEMA), N-isopropylacrylamide (NIPAAM), and N-vinylcaprolactam were used individually for copolymerization with acrylic acid (AA) to be grafted onto ePTFE using the gamma irradiation-induced grafting method. After surface modification, the hydrophobic and mechanical properties of ePTFE were altered. The water uptake and contact angle measurement showed that the modified ePTFE was less hydrophobic (∼500%, θ < 90°) than the unmodified ePTFE (0%, θ = 140°). Moreover, the mechanical properties of ePTFE changed after the modification process due to the polymer grafted onto the ePTFE surface. The data from mechanical tests, such as Young’s modulus (74–121 MPa), ultimate tensile strength (5–9 MPa), and elongation at break (56–121%), obtained for the sample AA-co-HEMA and AA-co-NIPAAM remain within the ranges and are considered desirable for use as a biomaterial. The mechanical strength correlates well with the percentage of the grafting yield after the modification process and is dependent on the parameters used, such as irradiation dose and type of comonomer.


2021 ◽  
Vol 63 (11) ◽  
pp. 66-69
Author(s):  
Vu Thang Tran ◽  
◽  
Thi Phuong Hoang ◽  
Ngo Vu Duong ◽  
Thi Phuong Hong Dao ◽  
...  

In this paper, the effects of a flame retardant system combining ATH/MPP (aluminum hydroxide/melamine phosphate) and the other additives such as zinc stearate (ZnSt) on some properties of flame retardant PE compound based on LDPE were studied. The total flame retardant content was 35% by weight. Mechanical properties (tensile at break, elongation at break), thermal stability, and fire resistance were determined by the respective methods ASTM D638, thermogravimetric analysis (TGA), scanning electron microscope (SEM), and UL-94 test. The obtained results showed that using the combination of ATH/MPP has increased the fire resistance and thermal stability of the PE compound. The sample CT7 (15%ATH/20%MPP/2%ZnSt) achieved the best fire resistance. The mechanical properties increased slightly when increasing the content of MPP and reached the maximum for samples containing only MPP. The SEM micrographs showed that the addition of zinc stearate improved the dispersion of ATH and MPP in the PE matrix. The effect of flame retardant additives and zinc stearate on the melt index value of the PE compound was also surveyed.


2019 ◽  
Vol 253 ◽  
pp. 02005
Author(s):  
Daniel Gere ◽  
Tibor Czigany

Nowadays, PLA is increasingly used as a packaging material, therefore it may appear in the petrol-based polymer waste stream. However, with the today’s mechanical recycling technologies PLA and PET bottles cannot be easily or cheaply separated. Therefore, our goal was to investigate the mechanical, morphological and thermal properties of different PET and PLA compounds in a wide range of compositions. We made different compounds from poly(ethylene-terephthalate) (PET) and poly(lactic acid) (PLA) by extrusion, and injection molded specimens from the compounds. We investigated the mechanical properties and the phase morphology of the samples and the thermal stability of the regranulates. PET and PLA are thermodynamically immiscible, therefore we observed a typical island-sea type morphology in SEM micrographs. When PLA was added, the mechanical properties (tensile strength, modulus, elongation at break and impact strength) changed significantly. The Young’s modulus increased, while elongation at break and impact strength decreased with the increase of the weight fraction of PLA. The TGA results indicated that the incorporation of PLA decreased the thermal stability of the PET/PLA blends.


Sign in / Sign up

Export Citation Format

Share Document