scholarly journals Hepatic transcriptome analysis identifies genes, polymorphisms and pathways involved in the fatty acids metabolism in sheep

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260514
Author(s):  
Asep Gunawan ◽  
Kasita Listyarini ◽  
Ratna Sholatia Harahap ◽  
Jakaria ◽  
Katrin Roosita ◽  
...  

Fatty acids (FA) in ruminants, especially unsaturated FA (USFA) have important impact in meat quality, nutritional value, and flavour quality of meat, and on consumer’s health. Identification of the genetic factors controlling the FA composition and metabolism is pivotal to select sheep that produce higher USFA and lower saturated (SFA) for the benefit of sheep industry and consumers. Therefore, this study was aimed to investigate the transcriptome profiling in the liver tissues collected from sheep with divergent USFA content in longissimus muscle using RNA deep-sequencing. From sheep (n = 100) population, liver tissues with higher (n = 3) and lower (n = 3) USFA content were analysed using Illumina HiSeq 2500. The total number of reads produced for each liver sample were ranged from 21.28 to 28.51 million with a median of 23.90 million. Approximately, 198 genes were differentially regulated with significance level of p-adjusted value <0.05. Among them, 100 genes were up-regulated, and 98 were down-regulated (p<0.01, FC>1.5) in the higher USFA group. A large proportion of key genes involved in FA biosynthesis, adipogenesis, fat deposition, and lipid metabolism were identified, such as APOA5, SLC25A30, GFPT1, LEPR, TGFBR2, FABP7, GSTCD, and CYP17A. Pathway analysis revealed that glycosaminoglycan biosynthesis- keratan sulfate, adipokine signaling, galactose metabolism, endocrine and other factors-regulating calcium metabolism, mineral metabolism, and PPAR signaling pathway were playing important regulatory roles in FA metabolism. Importantly, polymorphism and association analyses showed that mutation in APOA5, CFHR5, TGFBR2 and LEPR genes could be potential markers for the FA composition in sheep. These polymorphisms and transcriptome networks controlling the FA variation could be used as genetic markers for FA composition-related traits improvement. However, functional validation is required to confirm the effect of these SNPs in other sheep population in order to incorporate them in the sheep breeding program.

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 686
Author(s):  
Alireza Nazarian ◽  
Alexander M. Kulminski

Almost all complex disorders have manifested epidemiological and clinical sex disparities which might partially arise from sex-specific genetic mechanisms. Addressing such differences can be important from a precision medicine perspective which aims to make medical interventions more personalized and effective. We investigated sex-specific genetic associations with colorectal (CRCa) and lung (LCa) cancers using genome-wide single-nucleotide polymorphisms (SNPs) data from three independent datasets. The genome-wide association analyses revealed that 33 SNPs were associated with CRCa/LCa at P < 5.0 × 10−6 neither males or females. Of these, 26 SNPs had sex-specific effects as their effect sizes were statistically different between the two sexes at a Bonferroni-adjusted significance level of 0.0015. None had proxy SNPs within their ±1 Mb regions and the closest genes to 32 SNPs were not previously associated with the corresponding cancers. The pathway enrichment analyses demonstrated the associations of 35 pathways with CRCa or LCa which were mostly implicated in immune system responses, cell cycle, and chromosome stability. The significant pathways were mostly enriched in either males or females. Our findings provided novel insights into the potential sex-specific genetic heterogeneity of CRCa and LCa at SNP and pathway levels.


Author(s):  
Teruo Nagaya ◽  
Ken-Ichi Nakaya ◽  
Akemi Takahashi ◽  
Izumi Yoshida ◽  
Yoshinari Okamoto

To investigate the effects of serum saturated fatty acids (FAs) on human cholesterol metabolism, total-cholesterol (T-C), HDL-cholesterol (HDL-C), T-C/HDL-C ratio, and FA composition [myristic acid (MA, 14:0), palmitic acid (PA, 16:0) and stearic acid (SA, 18:0)] were determined in serum from 115 men and 120 women (20–70 years old). MA, PA and SA were expressed as percentages of serum total FAs. Using multivariate analysis to account for the confounding effects of age, body mass index, drinking, and smoking it was found that SA was negatively correlated with T-C and T-C/HDL-C ratio in both men and women. In men MA was negatively correlated with HDL-C, and in women SA was positively correlated with HDL-C. Although PA was the major component of serum saturated FAs, PA had no significant relation to any cholesterol indices in either sex. These results suggest that serum MA may aggravate and serum SA may improve cholesterol metabolism, thereby influencing the risk for ischaemic heart disease.


PEDIATRICS ◽  
1965 ◽  
Vol 36 (6) ◽  
pp. 940-950
Author(s):  
Allen Root

Growth hormone influences protein, fat, carbohydrate, and mineral metabolism. It promotes nitrogen retention, growth of cartilage, transportation of amino acids through the cell wall, and incorporation of amino acids into protein. This factor mobilizes free fatty acids from adipose tissue and increases the serum concentration of these substances; long-term administration of this hormone is followed by depletion of body fat stores and inhibition of fatty acid synthesis. In diabetic subjects growth hormone administration is followed by hyperglycemia, glycosuria, and ketosis; its effect on carbohydrate metabolism in normal subjcets is more subtle. Sodium, potassium, and inorganic phosphate are retained following the administration of growth hormone. Hypercalciuria also accompanies such treatment, an effect mediated through the parathyroid glands. Human growth hormone may be detected in the serum through the use of the radioimmunoassay. The hypothalamus is intimately involved with the control of the secretion and release of growth hormone from the pituitary. There is a correlation between the availability of glucose for metabolism and the plasma concentration of growth hormone; when glucose is unavailable growth hormone is released in order to provide a substitute source of energy, fatty acids. The administration of growth hormone to the patient with hypopituitarism is followed by growth in many instances, but it has not usually been effective in promoting growth in individuals with other abnormalities. Acquired resistance to the effect of growth hormone is accompanied by the development of antibodies directed against this protein.


2021 ◽  
Author(s):  
Jerry Chien-Yao Chao

Fatty acid (FA) composition between biofilms and batch planktonic cultures were compared for two bacterial species Pseudomonas aeruginosa and Staphylococcus aureaus. Biofilm cultures exhibited decrease in saturated fatty acids (SAFA) that potentially conform to a more fluidic biophysical membrane property. The amount of FA in the biofilms' extracellular polymeric substance was not sufficient to consider it having a major contribution to the observed differences between biofilms and batch planktonic cultures. While biofilm grazing by the amphipod Hyalella azteca was evident, only certain bacteria-specific FA appeared to have the potential to be retained (odd-number SAFA and branched-chain FA). H. azteca with diet strictly consisted of bacteria biofilms did not demonstrate significant changes in their nutritional condition in terms of ω-3 and ω-6 polyunsaturated fatty acids (PUFA): combined with the results from fasting trials, H. azteca appears to have the capacity to retain ω-3 and ω-6 PUFAs up to 10 days.


2018 ◽  
Vol 61 (4) ◽  
pp. 395-403
Author(s):  
Milan Margetín ◽  
Marta Oravcová ◽  
Jana Margetínová ◽  
Róbert Kubinec

Abstract. The fatty acid (FA) composition in the intramuscular fat (IMF) of the musculus longissimus dorsi (MLD) of Ile de France purebred lambs in two different production systems in Slovakia was evaluated using gas chromatography. In the first production system, lambs and ewes were assigned to pasture without access to concentrates (P). In the second system, lambs and ewes were confined indoors with hay/silage and access to concentrates (S). An analysis of variance with the following factors was employed: production system, sex, and production system–sex interactions. The proportions of arachidonic, eicosapentaeonic, docosapentaeonic, and docosahexaenoic FAs, i.e. long-chain polyunsaturated FA (PUFA), were significantly higher in P lambs (1.83, 0.82, 0.92, 0.29 g 100 g−1 FAME, respectively) than in S lambs (0.45, 0.14, 0.30, 0.09 g 100 g−1 FAME, respectively). The proportions of conjugated linoleic acid (CLA), n-6 PUFA, n-3 PUFA, and essential FA (linoleic and α-linolenic) were also significantly higher in P lambs (2.10, 8.50, 4.55, and 8.80 g 100 g−1 FAME, respectively) than in S lambs (0.65, 3.27, 1.50, and 3.64 g 100 g−1 FAME, respectively). The proportions of palmitic acid and myristic acid as important individual saturated FAs (SFA) were significantly higher in S lambs (28.51 and 8.30 g 100 g−1 FAME, respectively) than in P lambs (21.80 and 5.63 g 100 g−1 FAME, respectively). The proportion of all SFAs was also significantly higher in S lambs (57.87 g 100 g−1 FAME) than in P lambs (48.70 g 100 g−1 FAME). From a nutrition and human health point of view (i.e. higher proportions of PUFA, CLA, and essential FAs and lower proportions of SFAs), meat from P lambs was found to be more favourable and would be more highly recommended for consumption.


1999 ◽  
Vol 46 (4) ◽  
pp. 1001-1009
Author(s):  
S F Izmailov ◽  
G Y Zhiznevskaya ◽  
L V Kosenko ◽  
G N Troitskaya ◽  
N N Kudryavtseva ◽  
...  

Chemical composition of lipopolysaccharide (LPS) isolated from an effective (97) and ineffective (87) strains of R. l. viciae has been determined. LPS preparations from the two strains contained: glucose, galactose, mannose, fucose, arabinose, heptose, glucosamine, galactosamine, quinovosamine, and 3-N-methyl-3,6-dideoxyhexose, as well as glucuronic, galacturonic and 3-deoxyoctulosonic acid. The following fatty acids were identified: 3-OH 14:0, 3-OH 15:0, 3-OH 16:0, 3-OH 18:0 and 27-OH 28:0. The ratio of 3-OH 14:0 to other major fatty acids in LPS 87 was higher that in LPS 97. SDS/PAGE profiles of LPS indicated that, in lipopolysaccharides, relative content of S form LPS I to that of lower molecular mass (LPS II) was much higher in the effective strain 97 than in 87. All types of polysaccharides exo-, capsular-, lipo, (EPS, CPS, LPS, respectively) examined possessed the ability to bind faba bean lectin. The degree of affinity of the host lectin to LPS 87 was half that to LPS 97. Fatty acids (FA) composition from bacteroids and peribacteroid membrane (PBM) was determined. Palmitic, stearic and hexadecenoic acids were common components found in both strains. There was a high content of unsaturated fatty acids in bacteroids as well as in PBM lipids. The unsaturation index in the PBM formed by strain 87 was lower than in the case of strain 97. Higher ratio of 16:0 to 18:1 fatty acids was characteristic for PMB of the ineffective strain.


2010 ◽  
Vol 134 (1) ◽  
pp. 73-80
Author(s):  
Jorge L. Sepulveda ◽  
Yvette C. Tanhehco ◽  
Monica Frey ◽  
Lida Guo ◽  
Lorna J. Cropcho ◽  
...  

Abstract Context.—Whether cell membrane fatty acid (FA) composition is a useful indicator of vascular disease is unclear. Objective.—To study variation of erythrocyte (RBC) membrane FA in samples from healthy volunteers, hospitalized patients, and cardiac troponin I–elevated patients with myocardial damage without a priori assumptions as to FA composition. Design.—We separated FAs extracted from RBCs by gas chromatography and identified them by mass spectrometry. Fatty acids with abundance greater than 1% of total were quantified and compared: hexadecanoic (C16:0), octadecadienoic (C18:2), cis- and trans-octadecenoic (C18:1), and eicosatetraenoic (C20:4) acids. Deuterated standards established proportionality of FA recovery. The cis- and trans-C18:1 identification was verified by comparison with standards. Results.—In troponin-positive samples, C18:2 to C18:1 ratios were increased 30% compared with healthy controls or with random patient samples. Erythrocyte trans-C18:1 had a wide variation, ∼10-fold, in all groups but without differences between groups. Replicates showed that the wide range of RBC trans-FA load is not due to analytic variation. In healthy subjects, the RBC content of lower– molecular weight FAs (C16-C18) correlated with serum low-density lipoprotein cholesterol, but despite the established relationship between dietary trans-FA and increased low-density lipoprotein cholesterol, lipid profiles had no correlation with RBC trans-FA content. Conclusions.—Erythrocyte accumulation of unsaturated FA may be a useful indicator of vascular disease, whereas the wide range in trans-FAs suggests that both diet and genetic variation affect RBC trans-FA accumulation. Unsaturated FAs increase membrane fluidity and may reflect a natural response to subclinical vascular changes, which may in turn reflect increased risk of clinical disease.


2020 ◽  
Vol 9 (5) ◽  
pp. 1489
Author(s):  
Alireza Nazarian ◽  
Anatoliy I. Yashin ◽  
Alexander M. Kulminski

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with no curative treatment available. Exploring the genetic and non-genetic contributors to AD pathogenesis is essential to better understand its underlying biological mechanisms, and to develop novel preventive and therapeutic strategies. We investigated potential genetically driven epigenetic heterogeneity of AD through summary data-based Mendelian randomization (SMR), which combined results from our previous genome-wide association analyses with those from two publicly available methylation quantitative trait loci studies of blood and brain tissue samples. We found that 152 probes corresponding to 113 genes were epigenetically associated with AD at a Bonferroni-adjusted significance level of 5.49E-07. Of these, 10 genes had significant probes in both brain-specific and blood-based analyses. Comparing males vs. females and hypertensive vs. non-hypertensive subjects, we found that 22 and 79 probes had group-specific associations with AD, respectively, suggesting a potential role for such epigenetic modifications in the heterogeneous nature of AD. Our analyses provided stronger evidence for possible roles of four genes (i.e., AIM2, C16orf80, DGUOK, and ST14) in AD pathogenesis as they were also transcriptionally associated with AD. The identified associations suggest a list of prioritized genes for follow-up functional studies and advance our understanding of AD pathogenesis.


2018 ◽  
Vol 63 (No. 7) ◽  
pp. 280-291 ◽  
Author(s):  
M. Prchal ◽  
M. Vandeputte ◽  
D. Gela ◽  
M. Doležal ◽  
H. Buchtová ◽  
...  

Fish are a rich source of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and thus, they should be an integral part of human diet at least twice a week. As a result, high attention has been devoted to the improvement of fatty acids (FA) content in the flesh of farmed fish through nutrition. Conversely, there are very few data on the potential of selective breeding to improve FA composition in fish. We estimated genetic parameters of fillet fatty acid content and performance traits in market size common carp cultured under semi-intensive pond conditions. The experimental stock arose through factorial mating of 7 dams and 36 sires. All families were reared communally. Pedigree was reconstructed with microsatellite markers, and 158 individuals were dressed out and selected for flesh FA composition analysis. Heritability estimates of total muscle fat, FA composition in total fat (TF) (n-3 PUFA-TF, PUFA-TF, EPA-TF – eicosapentaenoic acid, n-6/n-3 – omega6/omega3 PUFA ratio), and most performance traits were moderately heritable (h² = 0.23–0.41), and body weight was highly heritable (h<sup>2 </sup>= 0.62 ± 0.20). Genetic correlations show that selection for faster growth would indirectly lead to fillet yield improvement (r<sub>g </sub>= 0.50–0.62) while having little impact on muscle fat (r<sub>g </sub>= 0.21). However, lipid quality in flesh would be affected: n-3 PUFA-TF would decrease and the n-6/n-3 PUFA ratio would increase. A likely interpretation is that faster growing genotypes consume more supplemental feed, which was poor in the beneficial FAs. For sustainable selective breeding, supplemental feed composition should be modified, so that faster growing carps would maintain an appropriate flesh quality.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Liang Liu ◽  
Qinling Hu ◽  
Huihui Wu ◽  
Xiujing Wang ◽  
Chao Gao ◽  
...  

Diets containing various docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) ratios protect against liver damage in mice fed with a high-fat diet (HFD). However, it is unclear whether these beneficial roles of DHA and EPA are associated with alterations of fatty acid (FA) composition in the liver. This study evaluated the positive impacts of n-6/n-3 polyunsaturated fatty acids (PUFAs) containing different DHA/EPA ratios on HFD-induced liver disease and alterations of the hepatic FA composition. ApoE−/− mice were fed with HFDs with various ratios of DHA/EPA (2 : 1, 1 : 1, and 1 : 2) and an n-6/n-3 ratio of 4 : 1 for 12 weeks. After treatment, the serum and hepatic FA compositions, serum biochemical parameters, liver injury, and hepatic lipid metabolism-related gene expression were determined. Our results demonstrated that dietary DHA/EPA changed serum and hepatic FA composition by increasing contents of n-6 and n-3 PUFAs and decreasing amounts of monounsaturated fatty acids (MUFAs) and the n-6/n-3 ratio. Among the three DHA/EPA groups, the DHA/EPA 2 : 1 group tended to raise n-3 PUFAs concentration and lower the n-6/n-3 ratio in the liver, whereas DHA/EPA 1 : 2 tended to raise n-6 PUFAs concentration and improve the n-6/n-3 ratio. DHA/EPA supplementation reduced the hepatic impairment of lipid homeostasis, oxidative stress, and the inflammatory responses in HFD-fed mice. The DHA/EPA 2 : 1 group had lower serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol and higher levels of adiponectin than HFD group. The DHA/EPA 1 : 2 group had elevated serum levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase, without significant change the expression of genes for inflammation or hepatic lipid metabolism among the three DHA/EPA groups. The results suggest that DHA/EPA-enriched diet with an n-6/n-3 ratio of 4 : 1 may reverse HFD-induced nonalcoholic fatty liver disease to some extent by increasing n-6 and n-3 PUFAs and decreasing the amount of MUFAs and the n-6/n-3 ratio.


Sign in / Sign up

Export Citation Format

Share Document