scholarly journals Human GPR17 Nonsynonymous Variants Identified in Individuals with Metabolic Diseases Have Distinct Functional Signaling Profiles

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A656-A656
Author(s):  
Jason M Conley ◽  
Hongxia Ren

Abstract GPR17 is a G protein-coupled receptor (GPCR) implicated in the regulation of glucose metabolism and energy homeostasis. Our genetic knockout studies in rodents suggest that GPR17 is a potential therapeutic target for the treatment of metabolic diseases. However, the contributions of GPR17 to human metabolism and metabolic deficits are not well understood. Here, we analyzed the human GPR17 coding sequences of individuals from control and metabolic disease cohorts that were comprised of patients with clinical phenotypes including severe insulin resistance, hypercholesterolemia, and obesity. Across cohorts, 18 nonsynonymous GPR17 variants were identified, including eight variants that were exclusive to the disease cohort. We characterized the protein expression levels, cellular localization, and downstream functional signaling profiles of nine human GPR17 variants (F43L, V96M, V103M, D105N, A131T, G136S, R248Q, R301H, and G354V). We found that the protein expression levels and subcellular localization for each of the nine GPR17 variants were similar to that of the wild type GPR17. As the endogenous GPR17 ligand is still elusive, we used a synthetic GPR17 agonist to quantitatively measure the functional signaling profiles of GPR17 variants. We found some of the variants had distinctly altered signaling profiles. GPR17-G136S lost agonist-mediated cAMP, Ca2+, and beta-arrestin signaling. GPR17-V96M retained cAMP inhibition similar to GPR17-WT but had impaired Ca2+ and beta-arrestin signaling. GPR17-D105N displayed impaired cAMP and Ca2+ signaling but enhanced agonist-stimulated beta-arrestin recruitment. Also, GPR17-G354V retained cAMP and Ca2+ signaling function but had attenuated beta-arrestin recruitment. The identification and functional profiling of naturally occurring human GPR17 variants from individuals with metabolic diseases revealed receptor variants with distinct signaling profiles, including differential signaling perturbations that resulted in receptor signaling bias. These results are expected to contribute to our understanding of the molecular signaling mechanisms underlying GPR17 in metabolic regulation.

Physiology ◽  
2021 ◽  
Vol 36 (2) ◽  
pp. 102-113
Author(s):  
Elisabeth Rohbeck ◽  
Juergen Eckel ◽  
Tania Romacho

There is an urgent need for developing effective drugs to combat the obesity and Type 2 diabetes mellitus epidemics. The endocannabinoid system plays a major role in energy homeostasis. It comprises the cannabinoid receptors 1 and 2 (CB1 and CB2), endogenous ligands called endocannabinoids and their metabolizing enzymes. Because the CB1 receptor is overactivated in metabolic alterations, pharmacological blockade of the CB1 receptor arose as a promising candidate to treat obesity. However, because of the wide distribution of CB1 receptors in the central nervous system, their negative central effects halted further therapeutic use. Although the CB2 receptor is mostly peripherally expressed, its role in metabolic homeostasis remains unclear. This review discusses the potential of CB1 and CB2 receptors at the peripheral level to be therapeutic targets in metabolic diseases. We focus on the impact of pharmacological intervention and/or silencing on peripheral cannabinoid receptors in organs/tissues relevant for energy homeostasis. Moreover, we provide a perspective on novel therapeutic strategies modulating these receptors. Targeting CB1 with peripherally restricted antagonists, neutral antagonists, inverse agonists, or monoclonal antibodies could represent successful strategies. CB2 agonism has shown promising results at preclinical level. Beyond classic antagonism and agonism targeting orthosteric sites, the recently described crystal structures of CB1 and CB2 open new possibilities for therapeutic interventions with negative and positive allosteric modulators. The challenge of simultaneously targeting CB1 and CB2 might be possible by developing dual-steric ligands. The future will tell whether these promising strategies result in a renaissance of the cannabinoid receptors as therapeutic targets in metabolic diseases.


2021 ◽  
Vol 80 (5) ◽  
pp. 467-475
Author(s):  
Yu-Qing Li ◽  
C Shun Wong

Abstract 5′-Adenosine monophosphate-activated protein kinase (AMPK), a key regulator of cellular energy homeostasis, plays a role in cell fate determination. Whether AMPK regulates hippocampal neuronal development remains unclear. Hippocampal neurogenesis is abrogated after DNA damage. Here, we asked whether AMPK regulates adult hippocampal neurogenesis and its inhibition following irradiation. Adult Cre-lox mice deficient in AMPK in brain, and wild-type mice were used in a birth-dating study using bromodeoxyuridine to evaluate hippocampal neurogenesis. There was no evidence of AMPK or phospho-AMPK immunoreactivity in hippocampus. Increase in p-AMPK but not AMPK expression was observed in granule neurons and subgranular neuroprogenitor cells (NPCs) in the dentate gyrus within 24 hours and persisted up to 9 weeks after irradiation. AMPK deficiency in Cre-lox mice did not alter neuroblast and newborn neuron numbers but resulted in decreased newborn and proliferating NPCs. Inhibition of neurogenesis was observed after irradiation regardless of genotypes. In Cre-lox mice, there was further loss of newborn early NPCs and neuroblasts but not newborn neurons after irradiation compared with wild-type mice. These results are consistent with differential negative effect of AMPK on hippocampal neuronal development and its inhibition after irradiation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qilu Wei ◽  
Ning Kong ◽  
Xiaohui Liu ◽  
Run Tian ◽  
Ming Jiao ◽  
...  

Abstract Background Osteoarthritis (OA) is a disease of the entire joint involving synovial fibrosis and inflammation. Pathological changes to the synovium can accelerate the progression of OA. Pirfenidone (PFD) is a potent anti-fibrotic drug with additional anti-inflammatory properties. However, the influence of PFD on OA is unknown. Methods Proliferation of human fibroblast-like synoviocytes (FLSs) after treatment with TGF-β1 or PFD was evaluated using a Cell Counting Kit-8 assay and their migration using a Transwell assay. The expression of fibrosis-related genes (COL1A1, TIMP-1, and ACTA-2) and those related to inflammation (IL-6 and TNF-α) was quantified by real-time quantitative PCR. The protein expression levels of COL1A1, α-SMA (coded by ACTA-2), IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. A rabbit model of OA was established and then PFD was administered by gavage. The expression of genes related to fibrosis (COL1A1, TIMP-1, and ADAM-12) and inflammation (IL-6 and TNF-α) was measured using RNA extracted from the synovium. Synovial tissue was examined histologically after staining with H&E, Masson’s trichrome, and immunofluorescence. Synovitis scores, the volume fraction of collagen, and mean fluorescence intensity were calculated. Degeneration of articular cartilage was analyzed using a Safranin O-fast green stain and OARSI grading. Results The proliferation of FLSs was greatest when induced with 2.5 ng/ml TGF-β1 although it did not promote their migration. Therefore, 2.5 ng/ml TGF-β1 was used to stimulate the FLSs and evaluate the effects of PFD, which inhibited the migration of FLSs at concentrations as low as 1.0 mg/ml. PFD decreased the expression of COL1A1 while TGF-β1 increased both mRNA and protein expression levels of IL-6 but had no effect on α-SMA or TNF-α expression. PFD decreased mRNA expression levels of COL1A1, IL-6, and TNF-α in vivo. H&E staining and synovitis scores indicated that PFD reduced synovial inflammation, while Masson’s trichrome and immunofluorescence staining suggested that PFD decreased synovial fibrosis. Safranin O-Fast Green staining and the OARSI scores demonstrated that PFD delayed the progression of OA. Conclusions PFD attenuated synovial fibrosis and inflammation, and postponed the progression of osteoarthritis in a modified Hulth model of OA in rabbits, which was related to its anti-fibrotic and anti-inflammatory properties.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haiyan Zhou ◽  
Xinyi Peng ◽  
Jie Hu ◽  
Liwen Wang ◽  
Hairong Luo ◽  
...  

AbstractAdipose tissue-resident T cells have been recognized as a critical regulator of thermogenesis and energy expenditure, yet the underlying mechanisms remain unclear. Here, we show that high-fat diet (HFD) feeding greatly suppresses the expression of disulfide-bond A oxidoreductase-like protein (DsbA-L), a mitochondria-localized chaperone protein, in adipose-resident T cells, which correlates with reduced T cell mitochondrial function. T cell-specific knockout of DsbA-L enhances diet-induced thermogenesis in brown adipose tissue (BAT) and protects mice from HFD-induced obesity, hepatosteatosis, and insulin resistance. Mechanistically, DsbA-L deficiency in T cells reduces IFN-γ production and activates protein kinase A by reducing phosphodiesterase-4D expression, leading to increased BAT thermogenesis. Taken together, our study uncovers a mechanism by which T cells communicate with brown adipocytes to regulate BAT thermogenesis and whole-body energy homeostasis. Our findings highlight a therapeutic potential of targeting T cells for the treatment of over nutrition-induced obesity and its associated metabolic diseases.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 302 ◽  
Author(s):  
Xin Zhang ◽  
Yao Qin ◽  
Zhaohai Pan ◽  
Minjing Li ◽  
Xiaona Liu ◽  
...  

The main chemical component of cannabis, cannabidiol (CBD), has been shown to have antitumor properties. The present study examined the in vitro effects of CBD on human gastric cancer SGC-7901 cells. We found that CBD significantly inhibited the proliferation and colony formation of SGC-7901 cells. Further investigation showed that CBD significantly upregulated ataxia telangiectasia-mutated gene (ATM) and p53 protein expression and downregulated p21 protein expression in SGC-7901 cells, which subsequently inhibited the levels of CDK2 and cyclin E, thereby resulting in cell cycle arrest at the G0–G1 phase. In addition, CBD significantly increased Bax expression levels, decreased Bcl-2 expression levels and mitochondrial membrane potential, and then upregulated the levels of cleaved caspase-3 and cleaved caspase-9, thereby inducing apoptosis in SGC-7901 cells. Finally, we found that intracellular reactive oxygen species (ROS) increased after CBD treatment. These results indicated that CBD could induce G0–G1 phase cell cycle arrest and apoptosis by increasing ROS production, leading to the inhibition of SGC-7901 cell proliferation, thereby suggesting that CBD may have therapeutic effects on gastric cancer.


2021 ◽  
Vol 10 (2) ◽  
pp. 183
Author(s):  
Nadia Meyer ◽  
Lars Brodowski ◽  
Katja Richter ◽  
Constantin S. von Kaisenberg ◽  
Bianca Schröder-Heurich ◽  
...  

Endothelial dysfunction is a primary feature of several cardiovascular diseases. Endothelial colony-forming cells (ECFCs) represent a highly proliferative subtype of endothelial progenitor cells (EPCs), which are involved in neovascularization and vascular repair. Statins are known to improve the outcome of cardiovascular diseases via pleiotropic effects. We hypothesized that treatment with the 3-hydroxy-3-methyl-glutaryl–coenzyme A (HMG-CoA) reductase inhibitor pravastatin increases ECFCs’ functional capacities and regulates the expression of proteins which modulate endothelial health in a favourable manner. Umbilical cord blood derived ECFCs were incubated with different concentrations of pravastatin with or without mevalonate, a key intermediate in cholesterol synthesis. Functional capacities such as migration, proliferation and tube formation were addressed in corresponding in vitro assays. mRNA and protein levels or phosphorylation of protein kinase B (AKT), endothelial nitric oxide synthase (eNOS), heme oxygenase-1 (HO-1), vascular endothelial growth factor A (VEGF-A), placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and endoglin (Eng) were analyzed by real time PCR or immunoblot, respectively. Proliferation, migration and tube formation of ECFCs were enhanced after pravastatin treatment, and AKT- and eNOS-phosphorylation were augmented. Further, expression levels of HO-1, VEGF-A and PlGF were increased, whereas expression levels of sFlt-1 and Eng were decreased. Pravastatin induced effects were reversible by the addition of mevalonate. Pravastatin induces beneficial effects on ECFC function, angiogenic signaling and protein expression. These effects may contribute to understand the pleiotropic function of statins as well as to provide a promising option to improve ECFCs’ condition in cell therapy in order to ameliorate endothelial dysfunction.


2021 ◽  
Vol 22 (3) ◽  
pp. 1147
Author(s):  
Noy Bagdadi ◽  
Alaa Sawaied ◽  
Ali AbuMadighem ◽  
Eitan Lunenfeld ◽  
Mahmoud Huleihel

Pigment epithelium derived factor (PEDF) is a multifunctional secretory soluble glycoprotein that belongs to the serine protease inhibitor (serpin) family. It was reported to have neurotrophic, anti-angiogenic and anti-tumorigenic activity. Recently, PEDF was found in testicular peritubular cells and it was assumed to be involved in the avascular nature of seminiferous tubules. The aim of this study was to determine the cellular origin, expression levels and target cells of PEDF in testicular tissue of immature and adult mice under physiological conditions, and to explore its possible role in the process of spermatogenesis in vitro. Using immunofluorescence staining, we showed that PEDF was localized in spermatogenic cells at different stages of development as well as in the somatic cells of the testis. Its protein levels in testicular homogenates and Sertoli cells supernatant showed a significant decrease with age. PEDF receptor (PEDF-R) was localized within the seminiferous tubule cells and in the interstitial cells compartment. Its RNA expression levels showed an increase with age until 8 weeks followed by a decrease. RNA levels of PEDF-R showed the opposite trend of the protein. Addition of PEDF to cultures of isolated cells from the seminiferous tubules did not changed their proliferation rate, however, a significant increase was observed in number of meiotic/post meiotic cells at 1000 ng/mL of PEDF; indicating an in vitro differentiation effect. This study may suggest a role for PEDF in the process of spermatogenesis.


Sign in / Sign up

Export Citation Format

Share Document