scholarly journals Integrated RNA-seq Analysis and Meta-QTLs Mapping Provide Insights into Cold Stress Response in Rice Seedling Roots

2020 ◽  
Vol 21 (13) ◽  
pp. 4615 ◽  
Author(s):  
Weilong Kong ◽  
Chenhao Zhang ◽  
Yalin Qiang ◽  
Hua Zhong ◽  
Gangqing Zhao ◽  
...  

Rice (Oryza sativa L.) is a widely cultivated food crop around the world, especially in Asia. However, rice seedlings often suffer from cold stress, which affects their growth and yield. Here, RNA-seq analysis and Meta-QTLs mapping were performed to understand the molecular mechanisms underlying cold tolerance in the roots of 14-day-old seedlings of rice (RPY geng, cold-tolerant genotype). A total of 4779 of the differentially expressed genes (DEGs) were identified, including 2457 up-regulated and 2322 down-regulated DEGs. The GO, COG, KEEG, and Mapman enrichment results of DEGs revealed that DEGs are mainly involved in carbohydrate transport and metabolism, signal transduction mechanisms (plant hormone signal transduction), biosynthesis, transport and catabolism of secondary metabolites (phenylpropanoid biosynthesis), defense mechanisms, and large enzyme families mechanisms. Notably, the AP2/ERF-ERF, NAC, WRKY, MYB, C2H2, and bHLH transcription factors participated in rice’s cold–stress response and tolerance. On the other hand, we mapped the identified DEGs to 44 published cold–stress-related genes and 41 cold-tolerant Meta-QTLs regions. Of them, 12 DEGs were the published cold–stress-related genes and 418 DEGs fell into the cold-tolerant Meta-QTLs regions. In this study, the identified DEGs and the putative molecular regulatory network can provide insights for understanding the mechanism of cold stress tolerance in rice. In addition, DEGs in KEGG term-enriched terms or cold-tolerant Meta-QTLs will help to secure key candidate genes for further functional studies on the molecular mechanism of cold stress response in rice.

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1745
Author(s):  
Ben-Ben Miao ◽  
Su-Fang Niu ◽  
Ren-Xie Wu ◽  
Zhen-Bang Liang ◽  
Bao-Gui Tang ◽  
...  

Pearl gentian grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) is a fish of high commercial value in the aquaculture industry in Asia. However, this hybrid fish is not cold-tolerant, and its molecular regulation mechanism underlying cold stress remains largely elusive. This study thus investigated the liver transcriptomic responses of pearl gentian grouper by comparing the gene expression of cold stress groups (20, 15, 12, and 12 °C for 6 h) with that of control group (25 °C) using PacBio SMRT-Seq and Illumina RNA-Seq technologies. In SMRT-Seq analysis, a total of 11,033 full-length transcripts were generated and used as reference sequences for further RNA-Seq analysis. In RNA-Seq analysis, 3271 differentially expressed genes (DEGs), two low-temperature specific modules (tan and blue modules), and two significantly expressed gene sets (profiles 0 and 19) were screened by differential expression analysis, weighted gene co-expression networks analysis (WGCNA), and short time-series expression miner (STEM), respectively. The intersection of the above analyses further revealed some key genes, such as PCK, ALDOB, FBP, G6pC, CPT1A, PPARα, SOCS3, PPP1CC, CYP2J, HMGCR, CDKN1B, and GADD45Bc. These genes were significantly enriched in carbohydrate metabolism, lipid metabolism, signal transduction, and endocrine system pathways. All these pathways were linked to biological functions relevant to cold adaptation, such as energy metabolism, stress-induced cell membrane changes, and transduction of stress signals. Taken together, our study explores an overall and complex regulation network of the functional genes in the liver of pearl gentian grouper, which could benefit the species in preventing damage caused by cold stress.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1610
Author(s):  
Mohammad Vatanparast ◽  
Youngjin Park

Solenopsis japonica, as a fire ant species, shows some predatory behavior towards earthworms and woodlice, and preys on the larvae of other ant species by tunneling into a neighboring colony’s brood chamber. This study focused on the molecular response process and gene expression profiles of S. japonica to low (9 °C)-temperature stress in comparison with normal temperature (25 °C) conditions. A total of 89,657 unigenes (the clustered non-redundant transcripts that are filtered from the longest assembled contigs) were obtained, of which 32,782 were annotated in the NR (nonredundant protein) database with gene ontology (GO) terms, gene descriptions, and metabolic pathways. The results were 81 GO subgroups and 18 EggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) keywords. Differentially expressed genes (DEGs) with log2fold change (FC) > 1 and log2FC < −1 with p-value ≤ 0.05 were screened for cold stress temperature. We found 215 unigenes up-regulated and 115 unigenes down-regulated. Comparing transcriptome profiles for differential gene expression resulted in various DE proteins and genes, including fatty acid synthases and lipid metabolism, which have previously been reported to be involved in cold resistance. We verified the RNA-seq data by qPCR on 20 up- and down-regulated DEGs. These findings facilitate the basis for the future understanding of the adaptation mechanisms of S. japonica and the molecular mechanisms underlying the response to low temperatures.


2020 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Z011 may have improved salt tolerance by reducing Na+ transport from the roots to the leaves, increasing K+ absorption in the roots and reducing K+ secretion from the leaves to maintain a significantly greater K+/Na+ ratio. Twenty-four hours might be a relatively important time point for the salt-stress response of zoysiagrass. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation. This study provides fundamental information concerning the salt-stress response of Zoysia and improves the understanding of molecular mechanisms in salt-tolerant plants.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1367
Author(s):  
Ming Jiang ◽  
Long-Long Ma ◽  
Huai-An Huang ◽  
Shan-Wen Ke ◽  
Chun-Sheng Gui ◽  
...  

Stylosanthes (stylo) species are commercially significant tropical and subtropical forage and pasture legumes that are vulnerable to chilling and frost. However, little is known about the molecular mechanisms behind stylos’ responses to low temperature stress. Gretchen-Hagen 3 (GH3) proteins have been extensively investigated in many plant species for their roles in auxin homeostasis and abiotic stress responses, but none have been reported in stylos. SgGH3.1, a cold-responsive gene identified in a whole transcriptome profiling study of fine-stem stylo (S. guianensis var. intermedia) was further investigated for its involvement in cold stress tolerance. SgGH3.1 shared a high percentage of identity with 14 leguminous GH3 proteins, ranging from 79% to 93%. Phylogenetic analysis classified SgGH3.1 into Group Ⅱ of GH3 family, which have been proven to involve with auxins conjugation. Expression profiling revealed that SgGH3.1 responded rapidly to cold stress in stylo leaves. Overexpression of SgGH3.1 in Arabidopsis thaliana altered sensitivity to exogenous IAA, up-regulated transcription of AtCBF1-3 genes, activated physiological responses against cold stress, and enhanced chilling and cold tolerances. This is the first report of a GH3 gene in stylos, which not only validated its function in IAA homeostasis and cold responses, but also gave insight into breeding of cold-tolerant stylos.


2019 ◽  
Vol 20 (17) ◽  
pp. 4303 ◽  
Author(s):  
Hongyou Li ◽  
Qiuyu Lv ◽  
Jiao Deng ◽  
Juan Huang ◽  
Fang Cai ◽  
...  

Seed development is an essential and complex process, which is involved in seed size change and various nutrients accumulation, and determines crop yield and quality. Common buckwheat (Fagopyrum esculentum Moench) is a widely cultivated minor crop with excellent economic and nutritional value in temperate zones. However, little is known about the molecular mechanisms of seed development in common buckwheat (Fagopyrum esculentum). In this study, we performed RNA-Seq to investigate the transcriptional dynamics and identify the key genes involved in common buckwheat seed development at three different developmental stages. A total of 4619 differentially expressed genes (DEGs) were identified. Based on the results of Gene Ontology (GO) and KEGG analysis of DEGs, many key genes involved in the seed development, including the Ca2+ signal transduction pathway, the hormone signal transduction pathways, transcription factors (TFs), and starch biosynthesis-related genes, were identified. More importantly, 18 DEGs were identified as the key candidate genes for seed size through homologous query using the known seed size-related genes from different seed plants. Furthermore, 15 DEGs from these identified as the key genes of seed development were selected to confirm the validity of the data by using quantitative real-time PCR (qRT-PCR), and the results show high consistency with the RNA-Seq results. Taken together, our results revealed the underlying molecular mechanisms of common buckwheat seed development and could provide valuable information for further studies, especially for common buckwheat seed improvement.


2018 ◽  
Vol 19 (11) ◽  
pp. 3637 ◽  
Author(s):  
Xiaoshuang Li ◽  
Bei Gao ◽  
Daoyuan Zhang ◽  
Yuqing Liang ◽  
Xiaojie Liu ◽  
...  

Bryum argenteum is a desert moss which shows tolerance to the desert environment and is emerging as a good plant material for identification of stress-related genes. AP2/ERF transcription factor family plays important roles in plant responses to biotic and abiotic stresses. AP2/ERF genes have been identified and extensively studied in many plants, while they are rarely studied in moss. In the present study, we identified 83 AP2/ERF genes based on the comprehensive dehydrationrehydration transcriptomic atlas of B. argenteum. BaAP2/ERF genes can be classified into five families, including 11 AP2s, 43 DREBs, 26 ERFs, 1 RAV, and 2 Soloists. RNA-seq data showed that 83 BaAP2/ERFs exhibited elevated transcript abundances during dehydration–rehydration process. We used RT-qPCR to validate the expression profiles of 12 representative BaAP2/ERFs and confirmed the expression trends using RNA-seq data. Eight out of 12 BaAP2/ERFs demonstrated transactivation activities. Seven BaAP2/ERFs enhanced salt and osmotic stress tolerances of yeast. This is the first study to provide detailed information on the identification, classification, and functional analysis of the AP2/ERFs in B. argenteum. This study will lay the foundation for the further functional analysis of these genes in plants, as well as provide greater insights into the molecular mechanisms of abiotic stress tolerance of B. argenteum.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yo-Han Yoo ◽  
Woo-Jong Hong ◽  
Ki-Hong Jung

Chloroplasts are intracellular semiautonomous organelles central to photosynthesis and are essential for plant growth and yield. The significance of the function of chloroplast-related genes in response to climate change has not been well studied in crops. In the present study, the initial focus was on genes that were predicted to be located in the chloroplast genome in rice, a model crop plant, with genes either preferentially expressed in the leaf or ubiquitously expressed in all organs. The characteristics were analyzed by Gene Ontology (GO) enrichment and MapMan functional classification tools. It was then identified that 110 GO terms (45 for leaf expression and 65 for ubiquitous expression) and 1,695 genes mapped to MapMan overviews were strongly associated with chloroplasts. In particular, the MapMan cellular response overview revealed a close association between heat stress response and chloroplast-related genes in rice. Moreover, features of these genes in response to abiotic stress were analyzed using a large-scale publicly available transcript dataset. Consequently, the expression of 215 genes was found to be upregulated in response to high temperature stress. Conversely, genes that responded to other stresses were extremely limited. In other words, chloroplast-related genes were found to affect abiotic stress response mainly through high temperature response, with little effect on response to drought and salinity stress. These results suggest that genes involved in diurnal rhythm in the leaves participate in the reaction to recognize temperature changes in the environment. Furthermore, the predicted protein–protein interaction network analysis associated with high temperature stress is expected to provide a very important basis for the study of molecular mechanisms by which chloroplasts will respond to future climate changes.


Horticulturae ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 110
Author(s):  
Chunping Wang ◽  
Yifei Li ◽  
Wenqin Bai ◽  
Xiaomiao Yang ◽  
Hong Wu ◽  
...  

The molecular mechanisms underlying the variation in N-use efficiency (NUE) in pepper (Capsicum annuum L.) genotypes are poorly understood. In this work, two genotypes (750-1, low-N tolerant; ZCFB, low-N sensitive) with contrasting low-N tolerance were selected from 100 pepper cultivars on the basis of their relative leaf areas, shoot dry weights, root dry weights, and plant dry weights at the seedling stage. Subsequently, using RNA-Seq, the transcriptome of these two pepper genotypes under N starvation for 28 days was analyzed. We detected 2621/2470 and 3936/4218 different expressed genes (DEGs) in the leaves/roots of 750-1 and ZCFB, respectively. The changes in the expression of basic N metabolism genes were similar between 750-1 and ZCFB. However, different DEGs not directly involved in N metabolism were identified between the 750-1 and ZCFB cultivars. In 750-1, 110 unique DEGs were detected in the leaves, of which 103 were down-regulated, including genes associated with protein metabolism, photosynthesis, secondary metabolism, cell wall metabolism, stress response, and disease resistance. In ZCFB, 142 unique DEGs were detected in the roots, of which 117 were up-regulated, resulting in enhancement of processes such as protein degradation, secondary metabolites synthesis, lipid metabolism, endocytosis, the tricarboxylic acid cycle (TCA), transcriptional regulation, stress response, and disease resistance. Our results not only facilitate an understanding of the different regulatory process in low-N-tolerant and low-N-sensitive pepper cultivars, but also provide abundant candidate genes for improving the low-N tolerance of pepper cultivars.


2020 ◽  
Vol 5 (2) ◽  
pp. 66-82
Author(s):  
Wei Liu ◽  
◽  
Zhen Li ◽  
Qingguo Wang ◽  
Jiaowen Pan ◽  
...  

Background: Rice black streaked dwarf virus (RBSDV) is an important pathogen disease in rice and gramineous planting regions all over the world. The major phenotypes of RBSDV infected rice were dwarf with dark green leaves, which generally resulted in seriously loss of yield. The RBSDV known so far is preoperatively transmitted to rice in a persistent manner by small brown planthopper (SBPH), instead of transmitting to offspring through ovary. Results: To identify RBSDV responsive genes and to explore and clarify the molecular mechanisms involved in plant-virus interaction, digital gene expression profile (DGE) analysis was performed by high-throughput sequencing using wild-type (WT) and RBSDV infected rice leaves (IRL) as materials. A total of 165,975 and 165,940 unique tags were obtained in IRL and WT libraries, respectively. In comparison with the control, 896 differentially expressed genes (DEGs) were obtained, of which 500 DEGs were up regulated and 396 DEGs were down regulated. Functional analysis showed that DEGs mainly classified into10 groups, including metabolism, stress pathogen and defense, signal transduction, Transporter, transcription and post-transcription, cell structure and division etc. To further validate reliability and authenticity of the data, 10 DEGs were randomly picked and Real-time RT-PCR was carried out, and the expression trends of 7 genes were in line with the RNA-seq results. By searching the RBSDV related miRNA database of rice, 10 targeted genes of 6 significantly changed miRNAs were also identified in these DEGs. Conclusions: The data derived from RNA-seq were valid and credible. Through this research, a series of candidate RBSDV-responsive genes were obtained, and special signal transduction and metabolism pathways were built and pulled out in rice. This study provided further insight into the molecular mechanisms during compatible and incompatible interactions between viruses and their host plants.


Sign in / Sign up

Export Citation Format

Share Document