High‐Performance Al/PDMS TENG with Novel Complex Morphology of Two‐Height Microneedles Array for High‐Sensitivity Force‐Sensor and Self‐Powered Application

Small ◽  
2020 ◽  
Vol 16 (35) ◽  
pp. 2001209 ◽  
Author(s):  
Kai‐Hong Ke ◽  
Chen‐Kuei Chung
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhuang Hui ◽  
Ming Xiao ◽  
Daozhi Shen ◽  
Jiayun Feng ◽  
Peng Peng ◽  
...  

Abstract With the increase in the use of electronic devices in many different environments, a need has arisen for an easily implemented method for the rapid, sensitive detection of liquids in the vicinity of electronic components. In this work, a high-performance power generator that combines carbon nanoparticles and TiO2 nanowires has been fabricated by sequential electrophoretic deposition (EPD). The open-circuit voltage and short-circuit current of a single generator are found to exceed 0.7 V and 100 μA when 6 μL of water was applied. The generator is also found to have a stable and reproducible response to other liquids. An output voltage of 0.3 V was obtained after 244, 876, 931, and 184 μs, on exposure of the generator to 6 μL of water, ethanol, acetone, and methanol, respectively. The fast response time and high sensitivity to liquids show that the device has great potential for the detection of small quantities of liquid. In addition, the simple easily implemented sequential EPD method ensures the high mechanical strength of the device. This compact, reliable device provides a new method for the sensitive, rapid detection of extraneous liquids before they can impact the performance of electronic circuits, particularly those on printed circuit board.


2013 ◽  
Vol 13 (5) ◽  
pp. 253-264 ◽  
Author(s):  
Qiaokang Liang ◽  
Dan Zhang ◽  
Yaonan Wang ◽  
Yunjian Ge

Abstract This paper presents the design and analysis of a six-component Force/Torque (F/T) sensor whose design is based on the mechanism of the Compliant Parallel Mechanism (CPM). The force sensor is used to measure forces along the x-, y-, and z-axis (Fx, Fy and Fz) and moments about the x-, y-, and z-axis (Mx, My and Mz) simultaneously and to provide passive compliance during parts handling and assembly. Particularly, the structural design, the details of the measuring principle and the kinematics are presented. Afterwards, based on the Design of Experiments (DOE) approach provided by the software ANSYS®, a Finite Element Analysis (FEA) is performed. This analysis is performed with the objective of achieving both high sensitivity and isotropy of the sensor. The results of FEA show that the proposed sensor possesses high performance and robustness.


2018 ◽  
Vol 6 (2) ◽  
pp. 299-303 ◽  
Author(s):  
Ranran Zhuo ◽  
Yuange Wang ◽  
Di Wu ◽  
Zhenhua Lou ◽  
Zhifeng Shi ◽  
...  

Self-powered MoS2/GaN p–n heterojunction photodetectors exhibited high sensitivity to deep-UV light with high responsivity, specific detectivity and fast response speeds.


RSC Advances ◽  
2015 ◽  
Vol 5 (102) ◽  
pp. 84343-84349 ◽  
Author(s):  
Weili Zang ◽  
Pan Li ◽  
Yongming Fu ◽  
Lili Xing ◽  
Xinyu Xue

Self-powered humidity sensor with high sensitivity and repeatability has been fabricated from Co-doped ZnO NW arrays. Such a high performance can be attributed to the piezo-surface coupling effect and more active sites introduced by the Co dopants.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2854
Author(s):  
Seungju Jo ◽  
Inkyum Kim ◽  
Nagabandi Jayababu ◽  
Daewon Kim

Recently, studies on enhancing the performance of triboelectric nanogenerators (TENGs) by forming nanostructures at the contacting interface have been actively reported. In this study, a double-layered bottom electrode TENG (DE-TENG) was successfully fabricated using a metal deposition layer after the water-assisted oxidation (WAO) process. As previously reported, the WAO process for the enhancement of electrical performance increases the effective contact area with an inherent surface oxidation layer (Al2O3). As a new approach for modifying deficiencies in the WAO process, a metal deposition onto the oxidation layer was successfully developed with increased device output performance by restoring the surface conductivity. The proposed metal–dielectric–metal sandwich-structured DE-TENG generated approximately twice the electrical output generated by the WAO process alone (WAO-TENG). This dramatically improved electrical output was proven by a theoretical demonstration based on a double capacitance structure. In addition, the double capacitance structure was confirmed with the aid of a field emission scanning electron microscope. The optimal point at which the DE-TENG generates the highest electrical outputs was observed at a specific Cu layer sputtering time. The exceptional durability of the DE-TENG was proved by the 1 h endurance test under various relative humidity conditions. The potential of a self-powered force sensor using this DE-TENG is demonstrated, having a comparably high sensitivity of 0.82 V/N. Considering its structure, increased electrical energy, easy fabrication, and its durability, this novel DE-TENG is a promising candidate for the self-powered energy harvesting technology in our near future.


2020 ◽  
Vol 23 (10) ◽  
pp. 1010-1022
Author(s):  
Emrah Dural

Aim and scope: Due to the serious toxicological risks and their widespread use, quantitative determination of phthalates in cosmetic products have importance for public health. The aim of this study was to develop a validated simple, rapid and reliable high-performance liquid chromatography (HPLC) method for the determination of phthalates which are; dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP), di(2- ethylhexyl) phthalate (DEHP), in cosmetic products and to investigate these phthalate (PHT) levels in 48 cosmetic products marketing in Sivas, Turkey. Materials and Methods: Separation was achieved by a reverse-phase ACE-5 C18 column (4.6 x 250 mm, 5.0 μm). As the mobile phase, 5 mM KH2PO4 and acetonitrile were used gradiently at 1.5 ml min-1. All PHT esters were detected at 230 nm and the run time was taking 21 minutes. Results: This method showed the high sensitivity value the limit of quantification (LOQ) values for which are below 0.64 μg mL-1 of all phthalates. Method linearity was ≥0.999 (r2). Accuracy and precision values of all phthalates were calculated between (-6.5) and 6.6 (RE%) and ≤6.2 (RSD%), respectively. Average recovery was between 94.8% and 99.6%. Forty-eight samples used for both babies and adults were successfully analyzed by the developed method. Results have shown that, DMP (340.7 μg mL-1 ±323.7), DEP (1852.1 μg mL-1 ± 2192.0), and DBP (691.3 μg mL-1 ± 1378.5) were used highly in nail polish, fragrance and cream products, respectively. Conclusion: Phthalate esters, which are mostly detected in the content of fragrance, cream and nail polish products and our research in general, are DEP (1852.1 μg mL-1 ± 2192.0), DBP (691.3 μg mL-1 ± 1378.5) and DMP (340.7 μg mL-1 ±323.7), respectively. Phthalates were found in the content of all 48 cosmetic products examined, and the most detected phthalates in general average were DEP (581.7 μg mL-1 + 1405.2) with a rate of 79.2%. The unexpectedly high phthalate content in the examined cosmetic products revealed a great risk of these products on human health. The developed method is a simple, sensitive, reliable and economical alternative for the determination of phthalates in the content of cosmetic products, it can be used to identify phthalate esters in different products after some modifications.


2021 ◽  
Author(s):  
Lixiang Han ◽  
Mengmeng Yang ◽  
Peiting Wen ◽  
Wei Gao ◽  
nengjie huo ◽  
...  

One dimensional (1D)-two dimensional (2D) van der Waals (vdWs) mixed-dimensional heterostructures with advantages of atomically sharp interface, high quality and good compatibility have attracted tremendous attention in recent years. The...


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2163
Author(s):  
Dongjin Kim ◽  
Seungyong Han ◽  
Taewi Kim ◽  
Changhwan Kim ◽  
Doohoe Lee ◽  
...  

As the safety of a human body is the main priority while interacting with robots, the field of tactile sensors has expanded for acquiring tactile information and ensuring safe human–robot interaction (HRI). Existing lightweight and thin tactile sensors exhibit high performance in detecting their surroundings. However, unexpected collisions caused by malfunctions or sudden external collisions can still cause injuries to rigid robots with thin tactile sensors. In this study, we present a sensitive balloon sensor for contact sensing and alleviating physical collisions over a large area of rigid robots. The balloon sensor is a pressure sensor composed of an inflatable body of low-density polyethylene (LDPE), and a highly sensitive and flexible strain sensor laminated onto it. The mechanical crack-based strain sensor with high sensitivity enables the detection of extremely small changes in the strain of the balloon. Adjusting the geometric parameters of the balloon allows for a large and easily customizable sensing area. The weight of the balloon sensor was approximately 2 g. The sensor is employed with a servo motor and detects a finger or a sheet of rolled paper gently touching it, without being damaged.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2951
Author(s):  
Yangming Liu ◽  
Jialin Liu ◽  
Lufeng Che

Triboelectric nanogenerators (TENGs) have excellent properties in harvesting tiny environmental energy and self-powered sensor systems with extensive application prospects. Here, we report a high sensitivity self-powered wind speed sensor based on triboelectric nanogenerators (TENGs). The sensor consists of the upper and lower two identical TENGs. The output electrical signal of each TENG can be used to detect wind speed so that we can make sure that the measurement is correct by two TENGs. We study the influence of different geometrical parameters on its sensitivity and then select a set of parameters with a relatively good output electrical signal. The sensitivity of the wind speed sensor with this set of parameters is 1.79 μA/(m/s) under a wind speed range from 15 m/s to 25 m/s. The sensor can light 50 LEDs at the wind speed of 15 m/s. This work not only advances the development of self-powered wind sensor systems but also promotes the application of wind speed sensing.


Sign in / Sign up

Export Citation Format

Share Document