Tidal River Flow Calculations with Measured Velocities on the Open Boundaries

Author(s):  
A. Nehlsen ◽  
W. Michaelis ◽  
A. Müller
2019 ◽  
Author(s):  
Katixa Lajaunie-Salla ◽  
Aldo Sottolichio ◽  
Sabine Schmidt ◽  
Xavier Litrico ◽  
Guillaume Binet ◽  
...  

Abstract. In view of future coastal hypoxia widespreading, it is essential to define management solutions to preserve a good quality of coastal ecosystems. The lower Tidal Garonne River (TGR, SW France), characterized by the seasonal presence of a turbidity maximum zone and urban water discharges, is subject to episodic hypoxia events during summer low river flow periods. The future climatic conditions (higher temperature; summer droughts) but also an increasing urbanization could enhance hypoxia risks near the city of Bordeaux in the next decades. A 3D model of dissolved oxygen (DO), which couples hydrodynamics, sediment transport and biogeochemical processes, is used to assess the efficiency of different management solutions on TGR oxygenation during summer low-discharge periods. We have runned different scenarios of reduction of urban sewage overflows, displacement of urban discharges downstream from Bordeaux, and/or temporary river flow support during summer period. The model shows that each option limits hypoxia, but with variable efficiency over time and space. Sewage overflow reduction improves DO levels only locally near the city of Bordeaux. Downstream relocation of wastewater discharges allows to reach better oxygenation level in the lower TGR. The support of low river flow limits the upstream TMZ propagation and dilutes TGR waters with well-oxygenated river waters. Scenarios combining wastewater network management and low water replenishment indicate an improvement in water quality over the entire TGR. These modelling outcomes constitute important tools for local water authorities to develop the most appropriate strategies to limit hypoxia in TGR.


2019 ◽  
Vol 19 (11) ◽  
pp. 2551-2564
Author(s):  
Katixa Lajaunie-Salla ◽  
Aldo Sottolichio ◽  
Sabine Schmidt ◽  
Xavier Litrico ◽  
Guillaume Binet ◽  
...  

Abstract. Coastal-water hypoxia is increasing globally due to global warming and urbanization, and the need to define management solutions to improve the water quality of coastal ecosystems has become important. The lower tidal Garonne River (TGR; southwestern France), characterized by the seasonal presence of a turbidity maximum zone (TMZ) and urban water discharge, is subject to episodic hypoxia events during low river flow periods in the summer. Future climatic conditions (higher temperature and summer droughts) and increasing urbanization could enhance hypoxia risks near the city of Bordeaux in the coming decades. A 3-D model of dissolved oxygen (DO) that couples hydrodynamics, sediment transport and biogeochemical processes was used to assess the efficiency of different management solutions for oxygenation of the TGR during summer low-discharge periods. We ran different scenarios of reductions in urban sewage overflows, displacement of urban discharges downstream from Bordeaux and/or temporary river flow support during the summer period. The model shows that each option mitigates hypoxia, but with variable efficiency over time and space. Sewage overflow reduction improves DO levels only locally near the city of Bordeaux. Downstream relocation of wastewater discharges allows for better oxygenation levels in the lower TGR. The support of low river flow limits the upstream TMZ propagation and dilutes the TGR water with well-oxygenated river water. Scenarios combining wastewater network management and low-water replenishment indicate an improvement in water quality over the entire TGR. These modelling outcomes constitute important tools for local water authorities to develop the most appropriate strategies to limit hypoxia in the TGR.Highlights. A 3-D model shows different efficiencies of management actions to limit hypoxia. Downstream relocation of wastewater discharge totally mitigates hypoxia. Sewage overflow reduction improves DO levels but only locally. Water replenishment improves DO in the upper estuary.


Author(s):  
Thomas Williams ◽  
Bo Song ◽  
Daniel Hitchcock ◽  
Thomas O'Halloran

Over past years, extreme tropical storm events along the North and South Carolina coasts—and subsequent river flooding—have warranted the need for a better understanding of the hydrologic response to these events to protect life, property, businesses, and natural and cultural resources. Our focus in this study is the Pee Dee and Waccamaw River systems, which ultimately flow into Winyah Bay near Georgetown, South Carolina. River flows, coupled with the tidal nature of these freshwater systems, are complex and difficult to predict. The objective of the work is to analyze publicly available data from gauging stations along those river system as measured during Hurricanes Matthew and Florence and Tropical Storm Bertha—three uniquely different storm systems that produced varying rainfall depth, duration, and intensity across the Pee Dee Basin. The most important factor in tidal river analysis is the location of the stagnation point , where downstream river flow exactly balances upstream tidal flow. River flow only controls water level upstream of a tidal stagnation point, while ocean tide controls the water level downstream of a tidal stagnation point. An analysis of major flooding following Hurricanes Matthew, Florence, and Tropical Storm Bertha was used to determine the river flows associated with tidal stagnation at each stream gauge active during these storms. A major limitation of the analysis was a lack of flow data for the tidal channels in Georgetown County, which resulted in uncertainty in the flow associated with stagnation and uncertainty in the role played by each of the creeks that connect the Pee Dee and Waccamaw Rivers. Ignorance of the roles of these creeks most limited understanding of the relative importance of Pee Dee and Waccamaw flow to cause stagnation near Pawleys Island and Hagley gauges on the Waccamaw River and the Socastee gauge on the Atlantic Intracoastal Waterway.


2012 ◽  
Vol 212-213 ◽  
pp. 372-376
Author(s):  
Hong Chen

In this paper, a 2-D tidal river flow-sediment mathematical model is established by irregular triangular element calculation mesh and finite element numerical method. And verification is done through the comparison of measured value and the calculated. The result shows good agreement is obtained.


2018 ◽  
Vol 48 (12) ◽  
pp. 2887-2899 ◽  
Author(s):  
Tao Wang ◽  
W. Rockwell Geyer

AbstractSalinity variance dissipation is related to exchange flow through the salinity variance balance equation, and meanwhile its magnitude is also proportional to the turbulence production and stratification inside the estuary. As river flow increases, estuarine volume-integrated salinity variance dissipation increases owing to more variance input from the open boundaries driven by exchange flow and river flow. This corresponds to the increased efficient conversion of turbulence production to salinity variance dissipation due to the intensified stratification with higher river flow. Through the spring–neap cycle, the temporal variation of salinity variance dissipation is more dependent on stratification than turbulence production, so it reaches its maximum during the transition from neap to spring tides. During most of the transition time from spring to neap tides, the advective input of salinity variance from the open boundaries is larger than dissipation, resulting in the net increase of variance, which is mainly expressed as vertical variance, that is, stratification. The intensified stratification in turn increases salinity variance dissipation. During neap tides, a large amount of enhanced salinity variance dissipation is induced by the internal shear stress near the halocline. During most of the transition time from neap to spring tides, dissipation becomes larger than the advective input, so salinity variance decreases and the stratification is destroyed.


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Achmad Jaelani ◽  
Gusti Khairun Ni’mah

Sawahan Village is one of the Transmigration villages in the Cerbon sub-district, BaritoKuala district, South Kalimantan province. This village has a vast expanse of rice fieldsand 90% of the people work as farmers. Sawahan village has an area of 5,950 ha withproductive land of 1,200 ha which is mostly in the form of peatland. The land of thesawahan village is located near the tidal river flow containing low pH with high aciditylevels ranging from 3,5 to 4,5. Land in the area is a type of peat land (black brown), sothat not all plants, livestock and fish can grow / live except plants, fish, livestock thatcan adapt to this condition. Peatlands have their own difficulties in managing them.Some fruit plants and horticulture can live after being adapted to the condition of theland for a long period of time but given a considerable amount of lime to overcome highacidity and disease resistance. With this, many transmigrant farmers have difficulty inhandling the land because some species of plants and fish cannot develop properly. Forthis reason a new breakthrough is needed so that this problem can be overcome andfarmers are able to plant crops, fish and livestock specific to peatlands. Some of theresults of the Uniska Agriculture Faculty trial which tried several plants that wereadaptive to the conditions of peatlands such as Kweni Anjir, Limau Kuit, RambutanAntalagi and Kasturi. In addition to fruit trees, there are also horticultural plants thathave been tried on these peatlands, namely long beans, purple eggplant, bitter melon,tiyung chili (very spicy mini chili). For fish there are fragrant fish (cork) and catfish.Whereas livestock with Alabio ducks are resistant to peatland conditions. In addition tofruit trees, there are also horticulture plants that have been tried on these peatlands,namely long beans, purple eggplant, bitter melon, tiyung chili. The problem in thisactivity is how farmers make efforts in transmigrant areas by selecting mina plants, fishand livestock that are suitable for cultivation on peatlands, how to cultivate mina-plantsand livestock for peatland species to get maximum results and how to pioneer marketingefforts production so that it can really increase the income of transmigrant farmers inSawahan Village, Barito Kuala Regency.


2019 ◽  
Vol 872 ◽  
pp. 39-73 ◽  
Author(s):  
K. Kästner ◽  
A. J. F. Hoitink ◽  
P. J. J. F. Torfs ◽  
E. Deleersnijder ◽  
N. S. Ningsih

Conceptually, tidal rivers are seen as narrow channels along which the cross-section geometry remains constant and the bed is horizontal. As tidal waves propagate along such a channel, they decrease exponentially in height. The more rapid the decrease, the stronger the river flow. Near the coast, the tidally averaged width and depth change little throughout the year, even if the river discharge varies strongly between the seasons. However, further upstream, the water depth varies considerably with the river discharge. Recent observations from the Kapuas River, Indonesia, show that the water surface forms a backwater profile when the river flow is low. In this case, the depth converges, i.e. it gradually decreases between the river mouth and the point where the bed reaches sea level. This effect distinctly influences how tidal waves propagate up river so that their wave height does not decrease exponentially any more. We present a theoretical analysis of this phenomenon, which reveals several so far overlooked aspects of river tides. These aspects are particularly relevant to low river flow. Along the downstream part of the tidal river, depth convergence counteracts frictional damping so that the tidal range is higher than expected. Along the upstream parts of the tidal river, the low depth increases the damping so that the tide more rapidly attenuates. The point where the bed reaches sea level effectively limits the tidal intrusion, which carries over to the overtide and the subtidal water level set-up.


2018 ◽  
Vol 4 (1) ◽  
pp. 32-38
Author(s):  
Bhimo Rizky Samudro ◽  
Yogi Pasca Pratama

This paper will describe the function of water resources to support business activities in Surakarta regency, Central Java province. Surakarta is a business city in Central Java province with small business enterprises and specific culture. This city has a famous river with the name is Bengawan Solo. Bengawan Solo is a River Flow Regional (RFR) to support business activities in Surakarta regency. Concious with the function, societies and local government in Surakarta must to manage the sustainability of River Flow Regional (RFR) Bengawan Solo. It is important to manage the sustainability of business activity in Surakarta regency.   According to the condition in Surakarta regency, this paper will explain how the simulation of Low Impact Development Model in Surakarta regency. Low Impact Development is a model that can manage and evaluate sustainability of water resources in River Flow Regional (RFR). Low Impact Development can analys goals, structures, and process water resources management. The system can also evaluate results and impacts of water resources management. From this study, we hope that Low Impact Development can manage water resources in River Flow Regional (RFR) Bengawan Solo.  


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Raka Maulana ◽  
Yulianti Pratama ◽  
Lina Apriyanti

<p>Some areas in the city of Bandung is an area that dilitasi by the flow of the river, to prevent the introduction of garbage into the river basin is necessary to note the waste management systems in residential areas along the river. Cidurian river has a length of 24.86 Km along the river flow. Consists of the city of Bandung and Bandung regency. Administrative regions Cidurian River past eight (8) districts, from the region in the District Kiaracondong precisely Village Babakan Babakan Sari and Surabaya populous and the most densely populated. Thus, there should be community-based waste management in the form of a reduction in resources to prevent potential entry of waste into the river basin. Planning waste reduction will be divided into two, namely the reduction of inorganic waste with waste bank then the reduction of organic waste with absorption holes biopori, and bio reactor mini determination of the reduction is determined by the results of the analysis of the sampling covers the composition and garbage, then the result of the measurement characteristics test and analysis results questionnaire.</p>


Sign in / Sign up

Export Citation Format

Share Document