Treatment of Vagoglossopharyngeal Neuralgia with MVD and Other Neurosurgical Procedures

Author(s):  
Marc Sindou ◽  
Jianqing Chen
2020 ◽  
Vol 132 (4) ◽  
pp. 1188-1196 ◽  
Author(s):  
Tobias Greve ◽  
Veit M. Stoecklein ◽  
Franziska Dorn ◽  
Sophia Laskowski ◽  
Niklas Thon ◽  
...  

OBJECTIVEIntraoperative neuromonitoring (IOM), particularly of somatosensory-evoked potentials (SSEPs) and motor-evoked potentials (MEPs), evolved as standard of care in a variety of neurosurgical procedures. Case series report a positive impact of IOM for elective microsurgical clipping of unruptured intracranial aneurysms (ECUIA), whereas systematic evaluation of its predictive value is lacking. Therefore, the authors analyzed the neurological outcome of patients undergoing ECUIA before and after IOM introduction to this procedure.METHODSThe dates of inclusion in the study were 2007–2014. In this period, ECUIA procedures before (n = 136, NIOM-group; 2007–2010) and after introduction of IOM (n = 138, IOM-group; 2011–2014) were included. The cutoff value for SSEP/MEP abnormality was chosen as an amplitude reduction ≥ 50%. SSEP/MEP changes were correlated with neurological outcome. IOM-undetectable deficits (bulbar, vision, ataxia) were not included in risk stratification.RESULTSThere was no significant difference in sex distribution, follow-up period, subarachnoid hemorrhage risk factors, aneurysm diameter, complexity, and location. Age was higher in the IOM-group (57 vs 54 years, p = 0.012). In the IOM group, there were 18 new postoperative deficits (13.0%, 5.8% permanent), 9 hemisyndromes, 2 comas, 4 bulbar symptoms, and 3 visual deficits. In the NIOM group there were 18 new deficits (13.2%; 7.3% permanent, including 7 hemisyndromes). The groups did not significantly differ in the number or nature of postoperative deficits, nor in their recovery rate. In the IOM group, SSEPs and MEPs were available in 99% of cases. Significant changes were noted in 18 cases, 4 of which exhibited postoperative hemisyndrome, and 1 suffered from prolonged comatose state (5 true-positive cases). Twelve patients showed no new detectable deficits (false positives), however 2 of these cases showed asymptomatic infarction. Five patients with new hemisyndrome and 1 comatose patient did not show significant SSEP/MEP alterations (false negatives). Overall sensitivity of SSEP/MEP monitoring was 45.5%, specificity 89.8%, positive predictive value 27.8%, and negative predictive value 95.0%.CONCLUSIONSThe assumed positive impact of introducing SSEP/MEP monitoring on overall neurological outcome in ECUIA did not reach significance. This study suggests that from a medicolegal point of view, IOM is not stringently required in all neurovascular procedures. However, future studies should carefully address high-risk patients with complex procedures who might benefit more clearly from IOM than others.


2020 ◽  
Vol 132 (6) ◽  
pp. 1970-1976
Author(s):  
Ashwin G. Ramayya ◽  
H. Isaac Chen ◽  
Paul J. Marcotte ◽  
Steven Brem ◽  
Eric L. Zager ◽  
...  

OBJECTIVEAlthough it is known that intersurgeon variability in offering elective surgery can have major consequences for patient morbidity and healthcare spending, data addressing variability within neurosurgery are scarce. The authors performed a prospective peer review study of randomly selected neurosurgery cases in order to assess the extent of consensus regarding the decision to offer elective surgery among attending neurosurgeons across one large academic institution.METHODSAll consecutive patients who had undergone standard inpatient surgical interventions of 1 of 4 types (craniotomy for tumor [CFT], nonacute redo CFT, first-time spine surgery with/without instrumentation, and nonacute redo spine surgery with/without instrumentation) during the period 2015–2017 were retrospectively enrolled (n = 9156 patient surgeries, n = 80 randomly selected individual cases, n = 20 index cases of each type randomly selected for review). The selected cases were scored by attending neurosurgeons using a need for surgery (NFS) score based on clinical data (patient demographics, preoperative notes, radiology reports, and operative notes; n = 616 independent case reviews). Attending neurosurgeon reviewers were blinded as to performing provider and surgical outcome. Aggregate NFS scores across various categories were measured. The authors employed a repeated-measures mixed ANOVA model with autoregressive variance structure to compute omnibus statistical tests across the various surgery types. Interrater reliability (IRR) was measured using Cohen’s kappa based on binary NFS scores.RESULTSOverall, the authors found that most of the neurosurgical procedures studied were rated as “indicated” by blinded attending neurosurgeons (mean NFS = 88.3, all p values < 0.001) with greater agreement among neurosurgeon raters than expected by chance (IRR = 81.78%, p = 0.016). Redo surgery had lower NFS scores and IRR scores than first-time surgery, both for craniotomy and spine surgery (ANOVA, all p values < 0.01). Spine surgeries with fusion had lower NFS scores than spine surgeries without fusion procedures (p < 0.01).CONCLUSIONSThere was general agreement among neurosurgeons in terms of indication for surgery; however, revision surgery of all types and spine surgery with fusion procedures had the lowest amount of decision consensus. These results should guide efforts aimed at reducing unnecessary variability in surgical practice with the goal of effective allocation of healthcare resources to advance the value paradigm in neurosurgery.


2020 ◽  
Vol 25 (1) ◽  
pp. 51-56
Author(s):  
Steffen Fleck ◽  
Sascha Marx ◽  
Clara Bobak ◽  
Victoria Richter ◽  
Stephan Nowak ◽  
...  

OBJECTIVEIntracerebral metastases in neuroblastoma patients are rare, and information about the indication for and the outcome of neurosurgical procedures in this setting is scarce in the literature. The authors’ aim in the present study was to report a single-center experience with the neurosurgical treatment of intracerebral metastases in neuroblastoma.METHODSThis study is a retrospective single-center analysis of all neurosurgical strategies used in the treatment of intracerebral metastases in neuroblastoma patients.RESULTSBetween 2009 and 2017, 237 pediatric patients (94 girls, 143 boys) with a mean age of 39 months at diagnosis were treated for neuroblastoma. Five (2.1%) of the 237 patients had a neurosurgical procedure for intracerebral metastases. The metastases occurred a mean of 46 months after initial diagnosis. All of these patients had neuroblastoma stage 4. Indications for surgery were recurrent metastases after initial successful oncological treatment or progression of the metastasis under oncological treatment as well as deterioration of neurological function. Intraoperatively, the tumor usually had a distinguishable dissection plane but was infiltrative to adjacent nerves in some spots. Mean overall survival after the neurosurgical procedure was 22 months. Furthermore, in another 3 patients, a neurosurgical procedure was done for an intracranial but extracerebral metastasis.CONCLUSIONSNeurosurgical procedures for intracerebral metastases in neuroblastoma patients are rare and were performed in 2.1% of patients in the present study. Intracerebral metastases occurred during disease progression, and the prognosis after surgery was very limited. The main indications for surgery were rapid neurological deterioration or recurrence of the metastasis after initial successful oncological treatment. Intraoperatively, the metastases usually had a distinguishable dissection plane from the normal brain tissue.


2020 ◽  
pp. 1-9 ◽  
Author(s):  
Benjamin Davidson ◽  
Karim Mithani ◽  
Yuexi Huang ◽  
Ryan M. Jones ◽  
Maged Goubran ◽  
...  

OBJECTIVEMagnetic resonance imaging–guided focused ultrasound (MRgFUS) is an emerging treatment modality that enables incisionless ablative neurosurgical procedures. Bilateral MRgFUS capsulotomy has recently been demonstrated to be safe and effective in treating obsessive-compulsive disorder (OCD) and major depressive disorder (MDD). Preliminary evidence has suggested that bilateral MRgFUS capsulotomy can present increased difficulties in reaching lesional temperatures as compared to unilateral thalamotomy. The authors of this article aimed to study the parameters associated with successful MRgFUS capsulotomy lesioning and to present longitudinal radiographic findings following MRgFUS capsulotomy.METHODSUsing data from 22 attempted MRgFUS capsulotomy treatments, the authors investigated the relationship between various sonication parameters and the maximal temperature achieved at the intracranial target. Lesion volume and morphology were analyzed longitudinally using structural and diffusion tensor imaging. A retreatment procedure was attempted in one patient, and their postoperative imaging is presented.RESULTSSkull density ratio (SDR), skull thickness, and angle of incidence were significantly correlated with the maximal temperature achieved. MRgFUS capsulotomy lesions appeared similar to those following MRgFUS thalamotomy, with three concentric zones observed on MRI. Lesion volumes regressed substantially over time following MRgFUS. Fractional anisotropy analysis revealed a disruption in white matter integrity, followed by a gradual return to near-baseline levels concurrent with lesion regression. In the patient who underwent retreatment, successful bilateral lesioning was achieved, and there were no adverse clinical or radiographic events.CONCLUSIONSWith the current iteration of MRgFUS technology, skull-related parameters such as SDR, skull thickness, and angle of incidence should be considered when selecting patients suitable for MRgFUS capsulotomy. Lesions appear to follow morphological patterns similar to what is seen following MRgFUS thalamotomy. Retreatment appears to be safe, although additional cases will be necessary to further evaluate the associated safety profile.


2020 ◽  
Vol 12 (1) ◽  
pp. 001-008
Author(s):  
Ting Liu ◽  
Xing-Zhi Liao ◽  
Mai-Tao Zhou

Abstract Background Brain edema is one of the major causes of fatality and disability associated with injury and neurosurgical procedures. The goal of this study was to evaluate the effect of ulinastatin (UTI), a protease inhibitor, on astrocytes in a rat model of traumatic brain injury (TBI). Methodology A rat model of TBI was established. Animals were randomly divided into 2 groups – one group was treated with normal saline and the second group was treated with UTI (50,000 U/kg). The brain water content and permeability of the blood–brain barrier were assessed in the two groups along with a sham group (no TBI). Expression of the glial fibrillary acidic protein, endthelin-1 (ET-1), vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP-9) were measured by immunohistochemistry and western blot. Effect of UTI on ERK and PI3K/AKT signaling pathways was measured by western blot. Results UTI significantly decreased the brain water content and extravasation of the Evans blue dye. This attenuation was associated with decreased activation of the astrocytes and ET-1. UTI treatment decreased ERK and Akt activation and inhibited the expression of pro-inflammatory VEGF and MMP-9. Conclusion UTI can alleviate brain edema resulting from TBI by inhibiting astrocyte activation and ET-1 production.


BMJ Open ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. e049098
Author(s):  
Tristan Van Doormaal ◽  
Menno R Germans ◽  
Mariska Sie ◽  
Bart Brouwers ◽  
Andrew Carlson ◽  
...  

ObjectiveThe dural sealant patch (DSP) is designed for watertight dural closure after cranial surgery. The goal of this study is to assess, for the first time, safety and performance of the DSP as a means of reducing cerebrospinal fluid (CSF) leakage in patients undergoing elective cranial intradural surgery with a dural closure procedure.DesignFirst in human, open-label, single-arm, multicentre study with 360-day (12 months) follow-up.SettingThree large tertiary reference neurosurgical centres, two in the Netherlands and one in Switzerland.ParticipantsForty patients undergoing elective cranial neurosurgical procedures, stratified into 34 supratentorial and six infratentorial trepanations.InterventionEach patient received one DSP after cranial surgery and closure of the dura mater with sutures.Outcome measuresPrimary composite endpoint was occurrence of one of the following events: postoperative percutaneous CSF leakage, intraoperative leakage at 20 cm H2O positive end-expiratory pressure or postoperative wound infection. Overall success was defined as achieving the primary endpoint in no more than two patients. Secondary endpoints were device-related serious adverse events or adverse events (AEs), pseudomeningocele and thickness of dura+DSP. Additional endpoints were reoperation in 30 days and user satisfaction.ResultsNo patients met the primary endpoint. No device-related (serious) AEs were observed. There were two incidences of self-limiting pseudomeningocele as confirmed on MRI. Thickness of dura and DSP were (mean±SD) 3.5 mm±2.0 at day 7 and 2.1 mm±1.2 at day 90. No patients were reoperated within 30 days. Users reported a satisfactory design and intuitive application.ConclusionsDSP, later officially named Liqoseal, is a safe and potentially efficacious device for reducing CSF leakage after intracranial surgery, with favourable clinical handling characteristics. A randomised controlled trial is needed to assess Liqoseal efficacy against the best current practice for reducing postoperative CSF leakage.Trial registration numberNCT03566602.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Federico Longhini ◽  
Laura Pasin ◽  
Claudia Montagnini ◽  
Petra Konrad ◽  
Andrea Bruni ◽  
...  

Abstract Background Post-operative pulmonary complications (PPC) can develop in up to 13% of patients undergoing neurosurgical procedures and may adversely affect clinical outcome. The use of intraoperative lung protective ventilation (LPV) strategies, usually including the use of a low Vt, low PEEP and low plateau pressure, seem to reduce the risk of PPC and are strongly recommended in almost all surgical procedures. Nonetheless, feasibility of LPV strategies in neurosurgical patients are still debated because the use of low Vt during LPV might result in hypercapnia with detrimental effects on cerebrovascular physiology. Aim of our study was to determine whether LPV strategies would be feasible compared with a control group in adult patients undergoing cranial or spinal surgery. Methods This single-centre, pilot randomized clinical trial was conducted at the University Hospital “Maggiore della Carità” (Novara, Italy). Adult patients undergoing major cerebral or spinal neurosurgical interventions with risk index for pulmonary post-operative complications > 2 and not expected to need post-operative intensive care unit (ICU) admission were considered eligible. Patients were randomly assigned to either LPV (Vt = 6 ml/kg of ideal body weight (IBW), respiratory rate initially set at 16 breaths/min, PEEP at 5 cmH2O and application of a recruitment manoeuvre (RM) immediately after intubation and at every disconnection from the ventilator) or control treatment (Vt = 10 ml/kg of IBW, respiratory rate initially set at 6–8 breaths/min, no PEEP and no RM). Primary outcomes of the study were intraoperative adverse events, the level of cerebral tension at dura opening and the intraoperative control of PaCO2. Secondary outcomes were the rate of pulmonary and extrapulmonary complications, the number of unplanned ICU admissions, ICU and hospital lengths of stay and mortality. Results A total of 60 patients, 30 for each group, were randomized. During brain surgery, the number of episodes of intraoperative hypercapnia and grade of cerebral tension were similar between patients randomized to receive control or LPV strategies. No difference in the rate of intraoperative adverse events was found between groups. The rate of postoperative pulmonary and extrapulmonary complications and major clinical outcomes were similar between groups. Conclusions LPV strategies in patients undergoing major neurosurgical intervention are feasible. Larger clinical trials are needed to assess their role in postoperative clinical outcome improvements. Trial registration registered on the Australian New Zealand Clinical Trial Registry (www.anzctr.org.au), registration number ACTRN12615000707561.


Author(s):  
Adesh Shrivastava ◽  
Sumit Raj ◽  
Pradeep Chouksey ◽  
Rakesh Mishra ◽  
Surya Prakash ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document