scholarly journals Vault RNAs: hidden gems in RNA and protein regulation

Author(s):  
Jens Claus Hahne ◽  
Andrea Lampis ◽  
Nicola Valeri

Abstract Non-coding RNAs are important regulators of differentiation during embryogenesis as well as key players in the fine-tuning of transcription and furthermore, they control the post-transcriptional regulation of mRNAs under physiological conditions. Deregulated expression of non-coding RNAs is often identified as one major contribution in a number of pathological conditions. Non-coding RNAs are a heterogenous group of RNAs and they represent the majority of nuclear transcripts in eukaryotes. An evolutionary highly conserved sub-group of non-coding RNAs is represented by vault RNAs, named since firstly discovered as component of the largest known ribonucleoprotein complexes called “vault”. Although they have been initially described 30 years ago, vault RNAs are largely unknown and their molecular role is still under investigation. In this review we will summarize the known functions of vault RNAs and their involvement in cellular mechanisms.

2021 ◽  
Vol 12 ◽  
Author(s):  
Dharmendra Kumar Soni ◽  
Roopa Biswas

Non-coding RNAs (ncRNAs), notably microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have recently gained increasing consideration because of their versatile role as key regulators of gene expression. They adopt diverse mechanisms to regulate transcription and translation, and thereby, the function of the protein, which is associated with several major biological processes. For example, proliferation, differentiation, apoptosis, and metabolic pathways demand fine-tuning for the precise development of a specific tissue or organ. The deregulation of ncRNA expression is concomitant with multiple diseases, including lung diseases. This review highlights recent advances in the post-transcriptional regulation of miRNAs and lncRNAs in lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. Further, we also discuss the emerging role of ncRNAs as biomarkers as well as therapeutic targets for lung diseases. However, more investigations are required to explore miRNAs and lncRNAs interaction, and their function in the regulation of mRNA expression. Understanding these mechanisms might lead to early diagnosis and the development of novel therapeutics for lung diseases.


Author(s):  
Daniela Intartaglia ◽  
Giuliana Giamundo ◽  
Ivan Conte

MicroRNAs (miRNAs), a class of non-coding RNAs, are essential key players in the control of biological processes in both physiological and pathological conditions. miRNAs play important roles in fine tuning the expression of many genes, which often have roles in common molecular networks. miRNA dysregulation thus renders cells vulnerable to aberrant fluctuations in genes, resulting in degenerative diseases. The retinal pigment epithelium (RPE) is a monolayer of polarized pigmented epithelial cells that resides between the light-sensitive photoreceptors (PR) and the choriocapillaris. The demanding physiological functions of RPE cells require precise gene regulation for the maintenance of retinal homeostasis under stress conditions and the preservation of vision. Thus far, our understanding of how miRNAs function in the homeostasis and maintenance of the RPE has been poorly addressed, and advancing our knowledge is central to harnessing their potential as therapeutic agents to counteract visual impairment. This review focuses on the emerging roles of miRNAs in the function and health of the RPE and on the future exploration of miRNA-based therapeutic approaches to counteract blinding diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dandan Song ◽  
Jianhua Hou ◽  
Junduo Wu ◽  
Junnan Wang

Despite treatments being improved and many risk factors being identified, cardiovascular disease (CVD) is still a leading cause of mortality and disability worldwide. N6-methyladenosine (m6A) is the most common, abundant, and conserved internal modification in RNAs and plays an important role in the development of CVD. Many studies have shown that aabnormal m6A modifications of coding RNAs are involved in the development of CVD. In addition, non-coding RNAs (ncRNAs) exert post-transcriptional regulation in many diseases including CVD. Although ncRNAs have also been found to be modified by m6A, the studies on m6A modifications of ncRNAs in CVD are currently lacking. In this review, we summarized the recent progress in understanding m6A modifications in the context of coding RNAs and ncRNAs, as well as their regulatory roles in CVD.


2020 ◽  
Vol 20 ◽  
Author(s):  
Leila Mohammadi ◽  
Bashir Mosayyebi ◽  
Mahsa Imani ◽  
Nosratollah Zarghami ◽  
Effat Alizadeh ◽  
...  

: Dexamethasone (Dex) is a synthetic corticosteroid hormone derived from the steroid chemical group and is applicable in treating several pathological conditions like inflammation, autoimmune disease, and malignancies. Recent investigations on the mechanism of action of Dex and its possible interactions with other cellular regulatory networks may help explanation of the inconsistent effects of Dex in cancer treatment. Fine-tuning regulation of essential post-transcriptional regulators such as microRNA (miRNAs) has indispensable impacts on modulating fundamental cellular processes including gene expression, cell proliferation, cell cycling, and apoptosis. Dex appears to act as a double-edged sword on cancer cell progression and metastasis through regulating miRNA networks. As a proof of concept, recent investigations have proved Dex to be effective in cancer-treating either individually or in combination with other therapeutical compounds while several evidences have point to the controversial effects of Dex in the promotion of cancer cell survival, drug-resistance, and metastasis. In addition, it has been proved that other non-coding RNAs (ncRNAs) can also be directly or indirectly affected by Dex. In this review, we aimed to investigate the controversial effect of Dex on the cancer-related miRNAs.


2009 ◽  
Vol 10 (Suppl 4) ◽  
pp. S6 ◽  
Author(s):  
Rui-Sheng Wang ◽  
Guangxu Jin ◽  
Xiang-Sun Zhang ◽  
Luonan Chen

MicroRNA ◽  
2021 ◽  
Vol 11 ◽  
Author(s):  
Cervantes-Ayala Andrea Viridiana ◽  
Velázquez-Flores Miguel Ángel ◽  
Ruiz Esparza-Garrido Ruth

Abstract: MicroRNAs (miRNAs), small non-coding RNAs, participate in the transcriptional and post-transcriptional regulation of eukaryotic genes, and are potential biomarkers for diseases. Mature miRNAs can be located in both the nucleus and cytoplasm, where they perform their regulatory function. The discovery of new miRNAs and the identification of their targets and functions are fundamental to understanding the biological processes regulated by them, as well as the role they play in diseases. This present study researched miRNAs function at nuclear level and as circulating molecules.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2230
Author(s):  
Dominique Hirsz ◽  
Laura E. Dixon

Temperature is a critical environmental signal in the regulation of plant growth and development. The temperature signal varies across a daily 24 h period, between seasons and stochastically depending on local environmental events. Extracting important information from these complex signals has led plants to evolve multiple temperature responsive regulatory mechanisms at the molecular level. In temperate cereals, we are starting to identify and understand these molecular mechanisms. In addition, we are developing an understanding of how this knowledge can be used to increase the robustness of crop yield in response to significant changes in local and global temperature patterns. To enable this, it is becoming apparent that gene regulation, regarding expression and post-transcriptional regulation, is crucial. Large transcriptomic studies are identifying global changes in spliced transcript variants and regulatory non-coding RNAs in response to seasonal and stress temperature signals in many of the cereal crops. Understanding the functions of these variants and targets of the non-coding RNAs will greatly increase how we enable the adaptation of crops. This review considers our current understanding and areas for future development.


2015 ◽  
Vol 11 (7) ◽  
pp. 2068-2081 ◽  
Author(s):  
Sushmita Paul ◽  
Julio Vera

The microRNAs are small, endogenous non-coding RNAs found in plants, animals, and some viruses, which function in RNA silencing and post-transcriptional regulation of gene expression.


Author(s):  
Nicolas Curdy ◽  
Olivia Lanvin ◽  
Sarah Cadot ◽  
Camille Laurent ◽  
Jean-Jacques Fournié ◽  
...  

Immune cell activation triggers transcriptional and translational programs eliciting cellular processes, such as differentiation or proliferation, essential for an efficient immune response. These dynamic processes require an intricate orchestration of regulatory mechanisms to control the precise spatiotemporal expression of proteins. Post-transcriptional regulation ensures the control of messenger RNA metabolism and appropriate translation. Among these post-transcriptional regulatory mechanisms, stress granules participate in the control of protein synthesis. Stress granules are ribonucleoprotein complexes that form upon stress, typically under control of the integrated stress response. Such structures assemble upon stimulation of immune cells where they control selective translational programs ensuring the establishment of accurate effector functions. In this review, we summarize the current knowledge about post-transcriptional regulation in immune cells and highlight the role of stress sensors and stress granules in such regulation.


Sign in / Sign up

Export Citation Format

Share Document