scholarly journals LC-HRMS screening of per- and polyfluorinated alkyl substances (PFAS) in impregnated paper samples and contaminated soils

Author(s):  
Boris Bugsel ◽  
Rebecca Bauer ◽  
Florian Herrmann ◽  
Martin E. Maier ◽  
Christian Zwiener

AbstractHigh per- and polyfluorinated alkyl substance (PFAS) concentrations have been detected in agricultural soils in Southwest Germany. Discharges of PFAS-contaminated paper sludge and compost are suspected to be the cause of the contamination. Perfluorinated carboxylic acids (PFCAs) have been detected also in groundwater, drinking water, and plants in this area. Recently, previously unknown compounds have been identified by high-resolution mass spectrometry (HRMS). Major contaminants were polyfluorinated dialkylated phosphate esters (diPAPs) and N-ethyl perfluorooctane sulfonamide ethanol–based phosphate diester (diSAmPAP). In this study, HRMS screening for PFAS was applied to 14 soil samples from the contaminated area and 14 impregnated paper samples which were from a similar period than the contamination. The paper samples were characterized by diPAPs (from 4:2/6:2 to 12:2/12:2), fluorotelomer mercapto alkyl phosphates (FTMAPs; 6:2/6:2 to 10:2/10:2), and diSAmPAP. In soil samples, diPAPs and their transformation products (TPs) were the major contaminants, but also FTMAPs, diSAmPAP, and their TPs occurred. The distribution patterns of the carbon chain lengths of the precursor PFAS in soil samples were shown to resemble those in paper samples. This supports the hypothesis that paper sludge is a major source of contamination. The presence of major degradation products like PFCAs, FTSAs, or PFOS and their distribution of carbon chain lengths indicate the activity of biotic or abiotic degradation processes and selective leaching processes from the upper soil horizons. Graphical abstract

Botany ◽  
2015 ◽  
Vol 93 (11) ◽  
pp. 793-800 ◽  
Author(s):  
María Belén Vázquez ◽  
Viviana Barrera ◽  
Virginia Bianchinotti

Metsulfuron methyl (MM) is a sulfonylurea herbicide used worldwide for the control of weeds in cereal crops. In a previous study, three Trichoderma strains (T5, T6, and T7) capable of using MM as a sole carbon and energy source were isolated. In this study, the three strains were identified as Trichoderma harzianum using genetic markers, and the transformation of MM by the T. harzianum strains was quantified using spectrophotometry. Solutions of different phytotoxic doses of MM were incubated with plugs of mycelia of the Trichoderma strains and the resulting mixtures were used to assess MM detoxification. The toxicity of the degradation products was tested with a bioassay using pre-germinated seeds of Lens culinaris Medik. and mycelia. Strain T7 was more efficient in transforming MM at higher concentrations than the T5 and T6 strains. In the bioassay, T5 showed the best performance at higher MM doses. We conclude that both T5 and T7 strains are promising for further studies regarding treatment or amelioration of MM contaminated soils.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258166
Author(s):  
A. K. Shukla ◽  
S. K. Behera ◽  
R. Tripathi ◽  
C. Prakash ◽  
A. K. Nayak ◽  
...  

Understanding the spatial spreading patterns of plant-available sulphur (S) (AS) and plant-available micronutrients (available zinc (AZn), available iron (AFe), available copper (ACu), available manganese (AMn) and available boron (AB)) in soils, especially in coastal agricultural soils subjected to various natural and anthropogenic activities, is vital for sustainable crop production by adopting site-specific nutrient management (SSNM) strategies. We studied the spatial distribution patterns of AS, AZn, AFe, ACu, AMn, and AB in cultivated soils of coastal districts of India using geostatistical approaches. Altogether 39,097 soil samples from surface (0 to 15 cm depth) layers were gathered from farm lands of 68 coastal districts. The analysis of soil samples was carried out for soil pH, electrical conductivity (EC), soil organic carbon (SOC) and AS, AZn, AFe, ACu, AMn, and AB. Soil pH, EC and SOC varied from 3.70 to 9.90, 0.01 to 7.45 dS m-1 and 0.02 to 3.74%, respectively. The concentrations of AS, AZn, AFe, ACu, AMn, and AB varied widely in the study area with their corresponding mean values were 37.4±29.4, 1.50±1.53, 27.9±35.1, 2.14±1.74, 16.9±18.4 and 1.34±1.52 mg kg-1, respectively. The coefficient of variation values of analyzed soil parameters varied from 14.6 to 126%. The concentrations of AS, AZn, AFe, ACu, AMn, and AB were negatively and significantly correlated with soil pH and positively and significantly correlated with SOC. The geostatistical analysis indicated stable, Gaussian and exponential best-fit semivariogram models with moderate to strong spatial dependence for available nutrients. The generated spatial spreading maps revealed different distribution patterns for AS, AZn, AFe, ACu, AMn, and AB. There were variations in spatial spreading patterns of AS, AZn, AFe, ACu, AMn, and AB in east- and west-coastal area. About 62, 35, 12, 0.4, 23 and 45% of the study area had deficiency of AS, AZn, AFe, ACu, AMn, and AB, respectively. The spatial spreading maps will be highly useful for SSNM in the cultivated coastal soils of the country. This study could also be used as a base for assessing spatial spreading patterns of soil parameters in cultivated coastal areas of other parts of the world.


2020 ◽  
Vol 66 (5) ◽  
pp. 916-929
Author(s):  
Eligio Malusá ◽  
Małgorzata Tartanus ◽  
Witold Danelski ◽  
Artur Miszczak ◽  
Ewelina Szustakowska ◽  
...  

Abstract The analysis of 142 agricultural soil samples collected in organic farms across Poland with the intent to evaluate the level of DDT contamination resulted in more than 80% of the soils containing DDT. The ΣDDT (sum of all metabolites and isomers) concentration ranged between 0.005 and 0.383 mg/kg ΣDDT, with an average value of 0.064 mg/kg ΣDDT. However, the majority of plant samples collected from the crops growing on the sampled soils did not contain detectable DDT residues. The high DDT pollution levels detected in samples from four voivodeships (regions) among those monitored have been hypothesised to be linked to horticultural productions occurring to the sampled fields and typical of those regions, particularly in big-sized farms, during the period of DDT application, as well as the number of pesticides landfills present in these voivodeships. The elaboration of the o,p′-DDT/p,p′-DDT and DDT/(DDE + DDD) ratios to appraise the source or the period of contamination suggested that the contamination originated from past use of DDT rather than from impurities of more recent applications of other formulated substances. Such outcome thus suggests that the risk of contamination of organic products is likely derived from general environmental pollution levels rather than from the use of unauthorised substances in organic farming productions. Data from a trial with artificial contamination of soils indicated that using the DDT/(DDE + DDD) ratio in the presence of a low level of contamination could be less reliable than in highly contaminated soils.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 240
Author(s):  
Nuno P. F Gonçalves ◽  
Zsuzsanna Varga ◽  
Edith Nicol ◽  
Paola Calza ◽  
Stéphane Bouchonnet

The impact of different oxidation processes on the maprotiline degradation pathways was investigated by liquid chromatography-high resolution mass spectrometry (LC/HRMS) experiments. The in-house SPIX software was used to process HRMS data allowing to ensure the potential singular species formed. Semiconductors photocatalysts, namely Fe-ZnO, Ce-ZnO and TiO2, proved to be more efficient than heterogeneous photo-Fenton processes in the presence of hydrogen peroxide and persulfate. No significant differences were observed in the degradation pathways in the presence of photocatalysis, while the SO4− mediated process promote the formation of different transformation products (TPs). Species resulting from ring-openings were observed with higher persistence in the presence of SO4−. In-silico tests on mutagenicity, developmental/reproductive toxicity, Fathead minnow LC50, D. magna LC50, fish acute LC50 were carried out to estimate the toxicity of the identified transformation products. Low toxicant properties were estimated for TPs resulting from hydroxylation onto bridge rather than onto aromatic rings, as well as those resulting from the ring-opening.


Toxics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 81
Author(s):  
Kamila Šrédlová ◽  
Kateřina Šírová ◽  
Tatiana Stella ◽  
Tomáš Cajthaml

Metabolites of polychlorinated biphenyls (PCBs)—hydroxylated PCBs (OH‑PCBs), chlorobenzyl alcohols (CB‑OHs), and chlorobenzaldehydes (CB‑CHOs)—were incubated in vitro with the extracellular liquid of Pleurotus ostreatus, which contains mainly laccase and low manganese-dependent peroxidase (MnP) activity. The enzymes were able to decrease the amount of most of the tested OH‑PCBs by > 80% within 1 h; the removal of more recalcitrant OH‑PCBs was greatly enhanced by the addition of the laccase mediator syringaldehyde. Conversely, glutathione substantially hindered the reaction, suggesting that it acted as a laccase inhibitor. Hydroxylated dibenzofuran and chlorobenzoic acid were identified as transformation products of OH‑PCBs. The extracellular enzymes also oxidized the CB‑OHs to the corresponding CB‑CHOs on the order of hours to days; however, the mediated and nonmediated setups exhibited only slight differences, and the participating enzymes could not be determined. When CB‑CHOs were used as the substrates, only partial transformation was observed. In an additional experiment, the extracellular liquid of Irpex lacteus, which contains predominantly MnP, was able to efficiently transform CB‑CHOs with the aid of glutathione; mono‑ and di-chloroacetophenones were detected as transformation products. These results demonstrate that extracellular enzymes of ligninolytic fungi can act on a wide range of PCB metabolites, emphasizing their potential for bioremediation.


2021 ◽  
Vol 11 (15) ◽  
pp. 7099
Author(s):  
Inkyeong Moon ◽  
Honghyun Kim ◽  
Sangjo Jeong ◽  
Hyungjin Choi ◽  
Jungtae Park ◽  
...  

In this study, the geochemical properties of heavy metal-contaminated soils from a Korean military shooting range were analyzed. The chemical behavior of heavy metals was determined by analyzing the soil pH, heavy metal concentration, mineral composition, and Pb isotopes. In total, 24 soil samples were collected from a Korean military shooting range. The soil samples consist of quartz, albite, microcline, muscovite/illite, kaolinite, chlorite, and calcite. Lead minerals, such as hydrocerussite and anglesite, which are indicative of a transformation into secondary mineral phases, were not observed. All soils were strongly contaminated with Pb with minor concentrations of Cu, Ni, Cd, and Zn. Arsenic was rarely detected. The obtained results are indicated that the soils from the shooting range are contaminated with heavy metals and have evidences of different degree of anthropogenic Pb sources. This study is crucial for the evaluation of heavy metal-contaminated soils in shooting ranges and their environmental effect as well as for the establishment of management strategies for the mitigation of environmental risks.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Jonathan Suazo-Hernández ◽  
Erwin Klumpp ◽  
Nicolás Arancibia-Miranda ◽  
Patricia Poblete-Grant ◽  
Alejandra Jara ◽  
...  

Engineered nanoparticles (ENPs) present in consumer products are being released into the agricultural systems. There is little information about the direct effect of ENPs on phosphorus (P) availability, which is an essential nutrient for crop growthnaturally occurring in agricultural soils. The present study examined the effect of 1, 3, and 5% doses of Cu0 or Ag0 ENPs stabilized with L-ascorbic acid (suspension pH 2–3) on P ad- and desorption in an agricultural Andisol with total organic matter (T-OM) and with partial removal of organic matter (R-OM) by performing batch experiments. Our results showed that the adsorption kinetics data of H2PO4− on T-OM and R-OM soil samples with and without ENPs were adequately described by the pseudo-second-order (PSO) and Elovich models. The adsorption isotherm data of H2PO4− from T-OM and R-OM soil samples following ENPs addition were better fitted by the Langmuir model than the Freundlich model. When the Cu0 or Ag0 ENPs doses were increased, the pH value decreased and H2PO4− adsorption increased on T-OM and R-OM. The H2PO4− desorption (%) was lower with Cu0 ENPs than Ag0 ENPs. Overall, the incorporation of ENPs into Andisols generated an increase in P retention, which may affect agricultural crop production.


2016 ◽  
Vol 10 (9) ◽  
pp. e0005005 ◽  
Author(s):  
Patoo Withatanung ◽  
Narisara Chantratita ◽  
Veerachat Muangsombut ◽  
Natnaree Saiprom ◽  
Ganjana Lertmemongkolchai ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 66
Author(s):  
Juliet Kinyua ◽  
Aikaterini K. Psoma ◽  
Nikolaos I. Rousis ◽  
Maria-Christina Nika ◽  
Adrian Covaci ◽  
...  

There is a paucity of information on biotransformation and stability of new psychoactive substances (NPS) in wastewater. Moreover, the fate of NPS and their transformation products (TPs) in wastewater treatment plants is not well understood. In this study, batch reactors seeded with activated sludge were set up to evaluate biotic, abiotic, and sorption losses of p-methoxymethylamphetamine (PMMA) and dihydromephedrone (DHM) and identify TPs formed during these processes. Detection and identification of all compounds was performed with target and suspect screening approaches using liquid chromatography quadrupole-time-of-flight mass spectrometry. Influent and effluent 24 h composite wastewater samples were collected from Athens from 2014 to 2020. High elimination rates were found for PMMA (80%) and DHM (97%) after a seven-day experiment and degradation appeared to be related to biological activity in the active bioreactor. Ten TPs were identified and the main reactions were O- and N-demethylation, oxidation, and hydroxylation. Some TPs were reported for the first time and some were confirmed by reference standards. Identification of some TPs was enhanced by the use of an in-house retention time prediction model. Mephedrone and some of its previously reported human metabolites were formed from DHM incubation. Retrospective analysis showed that PMMA was the most frequently detected compound.


1973 ◽  
Vol 135 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Hans J. Förster ◽  
Klaus Biemann ◽  
W. Geoffrey Haigh ◽  
Neil H. Tattrie ◽  
J. Ross Colvin

A novel C35 terpene and its monounsaturated analogue were isolated from cultures of Acetobacter xylinum, together with traces of their C36 homologues. These substances were found to be hopane derivatives substituted by a five-carbon chain bearing four vicinal hydroxyl groups. For the parent hydrocarbon the term bacteriohopane is proposed. The elucidation of the structures utilized high-resolution mass spectrometry of the terpenes, degradation to C32 hydrocarbons and detailed mass-spectrometric comparison of these with C32 hydrocarbons synthesized from known pentacyclic triterpenes. High-resolution mass-spectral data of the terpenes are presented. N.m.r. data are in agreement with the proposed structures, which are further supported by the isolation from the same organism of 22-hydroxyhopane and derivative hopene(s).


Sign in / Sign up

Export Citation Format

Share Document