scholarly journals Osteocytes and Weightlessness

Author(s):  
Donata Iandolo ◽  
Maura Strigini ◽  
Alain Guignandon ◽  
Laurence Vico

Abstract Purpose of Review Osteocytes are considered to be the cells responsible for mastering the remodeling process that follows the exposure to unloading conditions. Given the invasiveness of bone biopsies in humans, both rodents and in vitro culture systems are largely adopted as models for studies in space missions or in simulated microgravity conditions models on Earth. Recent Findings After a brief recall of the main changes in bone mass and osteoclastic and osteoblastic activities in space-related models, this review focuses on the potential role of osteocytes in directing these changes. The role of the best-known signalling molecules is questioned, in particular in relation to osteocyte apoptosis. Summary The mechanotransduction actors identified in spatial conditions and the problems related to fluid flow and shear stress changes, probably enhanced by the alteration in fluid flow and lack of convection during spaceflight, are recalled and discussed.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2743-2743
Author(s):  
Simona Colla ◽  
Nicola Giuliani ◽  
Paola Storti ◽  
Mirca Lazzaretti ◽  
Katia Todoerti ◽  
...  

Abstract Bone marrow (BM) neo-angiogenesis has a critical role in multiple myeloma (MM) progression. It is well established that the angiogenic process in MM is mainly due to an overproduction of pro-angiogenic molecules by MM cells and the BM microenvironment cells. However the molecular mechanisms at the basis of the angiogenic process in MM are currently under investigation. The deregulation of the homeobox genes has been previously associated to tumor progression and neoangiogenesis. Particularly, overexpression of the homeobox HOXB7 is critical in tumor-associated angiogenic switch in solid tumors as breast cancer. Actually the potential role of HOXB7 in MM-induced angiogenesis is not known. In this study we have investigated the expression of HOXB7 by MM and BM microenvironment cells and its potential role in the regulation of the angiogenic process. First, by microarray analysis in a large database of MM patients (n°= 132) we found that HOXB7 was overexpressed by MM cells in about 10% of patients as compared to healthy donors and MGUS subjects. On the other hand HOXB7 mRNA was expressed in 18 out of 23 human myeloma cell lines tested. Moreover, we found that isolated BM mesenchymal (MSC) and osteoblastic (OB) cells, obtained from bone biopsies in a subgroup of MM patients (n°=24) expressed HOXB7 gene by microarray analysis and real time PCR. HOXB7 expression was also investigated at protein level by immunohistochemistry on bone biopsies of MM patients finding that MSC and OB as well as endothelial cells expressed HOXB7 protein mainly at nuclear level. In order to investigate the potential role of HOXB7 in the angiogenic process we enforced HOXB7 expression by lentivirus vectors in MSC using both primary BM MSC and the human MSC cell line HS-5 to obtain a stable transduced cell line. The overexpression of HOXB7 in HOXB7 transduced MSC as compared to the empty vector-transduced MSC cells was confirmed by real time PCR, western blot and immunohistochemistry. By Gene chips U133 plus 2.0 (Affymetrix) we evaluated the gene expression profiling of HOXB7 over-expressing MSC finding that proangiogenic cytokines, metalloproteinases and chemokines were significantly modulated in HOXB7-transduced MSC cells as compared to control cells. Data were validated either by real time PCR or by western blot and by an angiogenesis antibody array showing that bFGF and VEGF production was induced in MSC by HOXB7 overexpression. Consistently, we found that conditioned media of HOXB7-transduced MSC cells significantly stimulated vessel formation as compared to controls using an in vitro angiogenic model. Finally we observed that the angiogenic in vitro differentiation of HOXB7-transduced MSC was significantly increased as compared to controls. In conclusion our data suggest the HOXB7 overexpression in MSC regulates the angiogenic switch and could be a potential therapeutic target in MM-induced angiogenesis.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1092
Author(s):  
János András Mótyán ◽  
Márió Miczi ◽  
Stephen Oroszlan ◽  
József Tőzsér

To explore the sequence context-dependent nature of the human immunodeficiency virus type 1 (HIV-1) protease’s specificity and to provide a rationale for viral mutagenesis to study the potential role of the nucleocapsid (NC) processing in HIV-1 replication, synthetic oligopeptide substrates representing the wild-type and modified versions of the proximal cleavage site of HIV-1 NC were assayed as substrates of the HIV-1 protease (PR). The S1′ substrate binding site of HIV-1 PR was studied by an in vitro assay using KIVKCF↓NCGK decapeptides having amino acid substitutions of N17 residue of the cleavage site of the first zinc-finger domain, and in silico calculations were also performed to investigate amino acid preferences of S1′ site. Second site substitutions have also been designed to produce “revertant” substrates and convert a non-hydrolysable sequence (having glycine in place of N17) to a substrate. The specificity constants obtained for peptides containing non-charged P1′ substitutions correlated well with the residue volume, while the correlation with the calculated interaction energies showed the importance of hydrophobicity: interaction energies with polar residues were related to substantially lower specificity constants. Cleavable “revertants” showed one residue shift of cleavage position due to an alternative productive binding mode, and surprisingly, a double cleavage of a substrate was also observed. The results revealed the importance of alternative binding possibilities of substrates into the HIV-1 PR. The introduction of the “revertant” mutations into infectious virus clones may provide further insights into the potential role of NC processing in the early phase of the viral life-cycle.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yun-Qian Cui ◽  
Fei Meng ◽  
Wen-Li Zhan ◽  
Zhou-Tong Dai ◽  
Xinghua Liao

This study is aimed at exploring the potential role of GSDMC in kidney renal clear cell carcinoma (KIRC). We analyzed the expression of GSDMC in 33 types of cancers in TCGA database. The results showed that the expression of GSDMC was upregulated in most cancers. We found a significant association between high expression of GSDMC and shortened patient overall survival, progression-free survival, and disease-specific survival. In vitro experiments have shown that the expression of GSDMC was significantly elevated in KIRC cell lines. Moreover, decreased expression of GSDMC was significantly associated with decreased cell proliferation. In summary, we believe that this study provides valuable data supporting future clinical treatment.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Bernardino Clavo ◽  
Norberto Santana-Rodríguez ◽  
Pedro Llontop ◽  
Dominga Gutiérrez ◽  
Gerardo Suárez ◽  
...  

Introduction. This article provides an overview of the potential use of ozone as an adjuvant during cancer treatment.Methods. We summarize the findings of the most relevant publications focused on this goal, and we include our related clinical experience.Results. Over several decades, prestigious journals have publishedin vitrostudies on the capacity of ozone to induce direct damage on tumor cells and, as well, to enhance the effects of radiotherapy and chemotherapy. Indirect effects have been demonstrated in animal models: immune modulation by ozone alone and sensitizing effect of radiotherapy by concurrent ozone administration. The effects of ozone in modifying hemoglobin dissociation curve, 2,3-diphosphoglycerate levels, locoregional blood flow, and tumor hypoxia provide additional support for potential beneficial effects during cancer treatment. Unfortunately, only a few clinical studies are available. Finally, we describe some works and our experience supporting the potential role of local ozone therapy in treating delayed healing after tumor resection, to avoid delays in commencing radiotherapy and chemotherapy.Conclusions.In vitroand animal studies, as well as isolated clinical reports, suggest the potential role of ozone as an adjuvant during radiotherapy and/or chemotherapy. However, further research, such as randomized clinical trials, is required to demonstrate its potential usefulness as an adjuvant therapeutic tool.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 451 ◽  
Author(s):  
Ehsan Akbari ◽  
Griffin B. Spychalski ◽  
Kaushik K. Rangharajan ◽  
Shaurya Prakash ◽  
Jonathan W. Song

Sprouting angiogenesis—the infiltration and extension of endothelial cells from pre-existing blood vessels—helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm2 applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.


2011 ◽  
Vol 111 (1) ◽  
pp. 311-320 ◽  
Author(s):  
S. C. Newcomer ◽  
Dick H. J. Thijssen ◽  
D. J. Green

Physical activity, exercise training, and fitness are associated with decreased cardiovascular risk. In the context that a risk factor “gap” exists in the explanation for the beneficial effects of exercise on cardiovascular disease, it has recently been proposed that exercise generates hemodynamic stimuli which exert direct effects on the vasculature that are antiatherogenic. In this review we briefly introduce some of the in vitro and in vivo evidence relating exercise hemodynamic modulation and vascular adaptation. In vitro data clearly demonstrate the importance of shear stress as a potential mechanism underlying vascular adaptations associated with exercise. Supporting this is in vivo human data demonstrating that exercise-mediated shear stress induces localized impacts on arterial function and diameter. Emerging evidence suggests that exercise-related changes in hemodynamic stimuli other than shear stress may also be associated with arterial remodeling. Taken together, in vitro and in vivo data strongly imply that hemodynamic influences combine to orchestrate a response to exercise and training that regulates wall stress and peripheral vascular resistance and contributes to the antiatherogenic impacts of physical activity, fitness, and training.


2005 ◽  
Vol 73 (4) ◽  
pp. 2515-2523 ◽  
Author(s):  
Adriano L. S. Souza ◽  
Ester Roffê ◽  
Vanessa Pinho ◽  
Danielle G. Souza ◽  
Adriana F. Silva ◽  
...  

ABSTRACT In human schistosomiasis, the concentrations of the chemokine macrophage inflammatory protein 1α (MIP-1α/CCL3) is greater in the plasma of patients with clinical hepatosplenic disease. The objective of the present study was to confirm the ability of CCL3 to detect severe disease in patients classified by ultrasonography (US) and to evaluate the potential role of CCL3 in Schistosoma mansoni-infected mice. CCL3 was measured by enzyme-linked immunosorbent assay in the plasma of S. mansoni-infected patients. CCL3-deficient mice were infected with 25 cercariae, and various inflammatory and infectious indices were evaluated. The concentration of CCL3 was higher in the plasma of S. mansoni-infected than noninfected patients. Moreover, CCL3 was greater in those with US-defined hepatosplenic than with the intestinal form of the disease. In CCL3-deficient mice, the size of the granuloma and the liver eosinophil peroxidase activity and collagen content were diminished compared to wild-type mice. In CCL3-deficient mice, the worm burden after 14 weeks of infection, but not after 9 weeks, was consistently smaller. The in vitro response of mesenteric lymph node cells to antigen stimulation was characterized by lower levels of interleukin-4 (IL-4) and IL-10. CCL3 is a marker of disease severity in infected humans, and experimental studies in mice suggest that CCL3 may be a causative factor in the development of severe schistosomiasis.


2002 ◽  
Vol 22 (1) ◽  
pp. 332-342 ◽  
Author(s):  
Brandoch D. Cook ◽  
Jasmin N. Dynek ◽  
William Chang ◽  
Grigoriy Shostak ◽  
Susan Smith

ABSTRACT Telomere maintenance is essential for the continuous growth of tumor cells. In most human tumors telomeres are maintained by telomerase, a specialized reverse transcriptase. Tankyrase 1, a human telomeric poly(ADP-ribose) polymerase (PARP), positively regulates telomere length through its interaction with TRF1, a telomeric DNA-binding protein. Tankyrase 1 ADP-ribosylates TRF1, inhibiting its binding to telomeric DNA. Overexpression of tankyrase 1 in the nucleus promotes telomere elongation, suggesting that tankyrase 1 regulates access of telomerase to the telomeric complex. The recent identification of a closely related homolog of tankyrase 1, tankyrase 2, opens the possibility for a second PARP at telomeres. We therefore sought to establish the role of tankyrase 1 at telomeres and to determine if tankyrase 2 might have a telomeric function. We show that endogenous tankyrase 1 is a component of the human telomeric complex. We demonstrate that telomere elongation by tankyrase 1 requires the catalytic activity of the PARP domain and does not occur in telomerase-negative primary human cells. To investigate a potential role for tankyrase 2 at telomeres, recombinant tankyrase 2 was subjected to an in vitro PARP assay. Tankyrase 2 poly(ADP-ribosyl)ated itself and TRF1. Overexpression of tankyrase 2 in the nucleus released endogenous TRF1 from telomeres. These findings establish tankyrase 2 as a bona fide PARP, with itself and TRF1 as acceptors of ADP-ribosylation, and suggest the possibility of a role for tankyrase 2 at telomeres.


Blood ◽  
1989 ◽  
Vol 74 (4) ◽  
pp. 1213-1221 ◽  
Author(s):  
RL Nagel ◽  
EF Jr Roth

Abstract The study of inherited RBC resistance to malaria has increased our knowledge of the biochemistry and physiology of the host-parasite interaction and suggested potential sites for therapeutic intervention. Discovery by Jensen and Trager of the in vitro culture system for P falciparum has facilitated research in this area. Known RBC defects may affect invasion, growth, or merozoite liberation (Fig 1). Significant advances made in understanding mechanisms underlying protection against malaria should not obscure the fact that the data are far from complete. More knowledge is needed about the influence of the erythrocyte cytoskeleton on invasion and growth of parasites as well as the potential role of phospholipids, erythrocyte enzymes other than G6PD, or other metabolic products. Application of DNA analysis and recombinant technology may have an increasing impact on study of the interaction of RBC defects with malarial parasites.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Judit Gil-Zamorano ◽  
João Tomé-Carneiro ◽  
María-Carmen Lopez de las Hazas ◽  
Lorena del Pozo-Acebo ◽  
M. Carmen Crespo ◽  
...  

Abstract The role of miRNAs in intestinal lipid metabolism is poorly described. The small intestine is constantly exposed to high amounts of dietary lipids, and it is under conditions of stress that the functions of miRNAs become especially pronounced. Approaches consisting in either a chronic exposure to cholesterol and triglyceride rich diets (for several days or weeks) or an acute lipid challenge were employed in the search for intestinal miRNAs with a potential role in lipid metabolism regulation. According to our results, changes in miRNA expression in response to fat ingestion are dependent on factors such as time upon exposure, gender and small intestine section. Classic and recent intestinal in vitro models (i.e. differentiated Caco-2 cells and murine organoids) partially mirror miRNA modulation in response to lipid challenges in vivo. Moreover, intestinal miRNAs might play a role in triglyceride absorption and produce changes in lipid accumulation in intestinal tissues as seen in a generated intestinal Dicer1-deletion murine model. Overall, despite some variability between the different experimental cohorts and in vitro models, results show that some miRNAs analysed here are modulated in response to dietary lipids, hence likely to participate in the regulation of lipid metabolism, and call for further research.


Sign in / Sign up

Export Citation Format

Share Document