scholarly journals Influence of the Addition of Spruce Fibers to Industrial-Type High-Density Fiberboards Produced with Recycled Fibers

Author(s):  
Conrad M. Sala ◽  
Eduardo Robles ◽  
Grzegorz Kowaluk

Abstract The growing production of wood-based panels and the linked consumption result in a need for substituting standard wooden raw materials. The shortage of wood availability, as well as the increasing prices and a trend towards more environmentally friendly materials and processes, have encouraged the producers of wood-based products to consider extending the life cycle of wood composites. In the present work, the influence of substituting pine with spruce for industrial high-density fiberboards with 5% of recovered fibers was studied. Samples containing 0%, 25%, 50%, and 100% spruce fibers were tested in their mechanical resistance and their interaction with water. Boards from all samples met relevant standard requirements; however, the addition of spruce caused a decrease in mechanical properties, with homogeneity having the most significant influence. The modulus of rupture dropped up to 6% and the internal bond for 47% for samples having 50% of spruce. The most significant drop (50%) was observed for surface soundness for samples made with 100% spruce. Regarding physical properties, swelling increased up to 19% with 50% spruce; on the other hand, its water absorption decreased for up to 12%. The addition of spruce to industrial high-density fiberboards also influenced the formaldehyde content negatively, with an increase of up to 21% with 50% spruce. Graphic Abstract

Holzforschung ◽  
2013 ◽  
Vol 67 (6) ◽  
pp. 659-665 ◽  
Author(s):  
Jian Huang ◽  
Kai Gu ◽  
Kaichang Li

Abstract Three novel curing agents (I, II, and III) were synthesized from epichlorohydrin and ammonium hydroxide. The combinations of soy flour (SF) with one of the curing agents (SF-I, SF-II, and SF-III) were investigated as adhesives for making interior plywood. Water resistance tests showed that plywood panels bonded with SF-I and SF-III adhesives met the requirements of interior plywood, whereas those bonded with SF-II did not. The modulus of rupture, modulus of elasticity, and internal bond strength of particleboard panels bonded with the SF-II adhesive all exceeded the corresponding minimum industrial requirements for M-2 grade particleboard.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2632 ◽  
Author(s):  
Marius Cătălin Barbu ◽  
Yasmin Lohninger ◽  
Simon Hofmann ◽  
Günther Kain ◽  
Alexander Petutschnigg ◽  
...  

The aim of this study is to investigate the formaldehyde content and emissions of bark-based insulation panels bonded with three types of adhesives: urea formaldehyde, melamine urea-formaldehyde, and tannin-based adhesives. These panels were produced at two levels of density—300 and 500 kg/m3—and a thickness of 20 mm, and the influence of the adhesive amount and type on the formaldehyde emissions and content was measured. Other mechanical and physical properties such as modulus of rupture, modulus of elasticity, internal bond, and dimensional stability were also scrutinized. With one exception, all the panels belonged to the super E0 classification for free formaldehyde content (perforator value ≤1.5 mg/100 g oven dry mass of panels). The measurements using the desiccator method for formaldehyde emissions assigned all the testing specimens in the F **** category for low-emission panels according to the Japanese International Standards.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Mohd Hazim Mohamad Amini ◽  
Rokiah Hashim ◽  
Nurul Syuhada Sulaiman

Oil palm trunk is a kind of biomass rich in starch content. Oil palm trunk waste was available throughout the year in Malaysia and Indonesia due to continuous felling of nonproductive, over 25-year-old trees. Even though some manufacturers were using it in plywood and veneer production, they are hard to handle which later becomes less favorable raw materials due to a high moisture content where combination with a high starch content quickly attracts fungus and wood-decaying agents. The objective of this work was to evaluate properties of experimental wood composite panels, manufactured using oil palm-extracted starch modified with glutardialdehyde (OPSMG) as a binder. Different analyses were employed to characterize the properties of the samples besides evaluation of bending, internal bonding strength, and dimensional stability of the panels. Characterization on the functional group using the FT-IR analysis showed presence of aldehyde groups and ketone stretching vibrations at 1736.05 cm−1 and 1596.25 cm−1, which proves the presence of glutardialdehyde besides formation of bonding between the OPSMG and the woody materials. The XRD analysis showed the starch modification had lowered the crystallinity index which in turn increased the strength of the manufactured wood composites. The OPSMG wood composites were also found to have lower thermal stability, as evaluated using the TGA analysis. It was recorded that the maximum modulus of rupture for OPSMG wood composites was achieved at the 0.80 g/cm3 density level with an average value of 15.446 N/mm2 which showed 38.00% increment in strength between those two types of wood composites. Thickness swelling after immersion in water can still be improved by incorporating the moisture-repellent material later. After analyzing the results, it was concluded that modified oil palm starch has the potential to be used as an environment friendly binder for wood composite making.


2020 ◽  
Vol 111 ◽  
pp. 143-159
Author(s):  
Conrad M. Sala ◽  
Grzegorz Kowaluk

Defibration pressure and fibres drying parameters influence on the HDF properties made with recovered fibres. The objective of this study was to investigate the defibration pressure and fibres drying process parameters (influence on the mechanical, physical properties and on formaldehyde content (FC) of ultrathin (2.5 mm) industrial high-density fibreboards (HDF) produced with 5% of recovered HDF (rHDF) addition. For this investigation the fibres were produced in industrial defibrator under four different set points: 0.65 MPa (V1), 0.90 MPa (V2), 1.00 MPa (V3) and 1.06 MPa (V4), dried in industrial two stage dryer with four different dryer inlet temperatures set points: 100°C (V00), 111°C (V11), 122°C (V22) and 133°C (V33). The results indicated that pressure is a significant factor and affects for all HDF properties. Too low defibrator pressure negatively influences HDF mechanical and physical properties as well as FC (high level). Regarding fibre drying temperature influence on HDF properties, no straight correlation was found. Linear negative correlation was found for modulus of rupture – 10% decrease comparing V00 to V33, internal bond – 23% decrease comparing V00 to V22 and surface soundness – also 23% decrease comparing V00 to V33.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 319
Author(s):  
Marius Cătălin Barbu ◽  
Zeno Montecuccoli ◽  
Jakob Förg ◽  
Ulrike Barbeck ◽  
Petr Klímek ◽  
...  

Brewer’s spent grain (BSG) is the richest by-product (85%) of the beer-brewing industry, that can be upcycled in a plentiful of applications, from animal feed, bioethanol production or for removal of heavy metals from wastewater. The aim of this research is to investigate the mechanical, physical and structural properties of particleboard manufactured with a mixture of wood particles and BSG gradually added/replacement in 10%, 30% and 50%, glued with polymeric diisocyanate (pMDI), urea-formaldehyde (UF) and melamine urea-formaldehyde (MUF) adhesives. The density, internal bond, modulus of rupture, modulus of elasticity, screw withdrawal resistance, thickness swelling and water absorption were tested. Furthermore, scanning electron microscopy anaylsis was carried out to analyze the structure of the panels after the internal bond test. Overall, it was shown that the adding of BSG decreases the mechanical performance of particleboard, due to reduction of the bonding between wood and BSG particles. This decrease has been associated with the structural differences proven by SEM inspection. Interaction of particles with the adhesive is different for boards containing BSG compared to those made from wood. Nevertheless, decrease in the mechanical properties was not critical for particleboards produced with 10% BSG which could be potentially classified as a P2 type, this means application in non-load-bearing panel for interior use in dry conditions, with high dimensional stability and stiffness.


2021 ◽  
Vol 11 (14) ◽  
pp. 6445
Author(s):  
David Ibarra ◽  
Raquel Martín-Sampedro ◽  
Bernd Wicklein ◽  
Úrsula Fillat ◽  
María E. Eugenio

Motivated by the negative impact of fossil fuel consumption on the environment, the need arises to produce materials and energy from renewable sources. Cellulose, the main biopolymer on Earth, plays a key role in this context, serving as a platform for the development of biofuels, chemicals and novel materials. Among the latter, micro- and nanocellulose have been receiving increasing attention in the last few years. Their many attractive properties, i.e., thermal stability, high mechanical resistance, barrier properties, lightweight, optical transparency and ease of chemical modification, allow their use in a wide range of applications, such as paper or polymer reinforcement, packaging, construction, membranes, bioplastics, bioengineering, optics and electronics. In view of the increasing demand for traditional wood pulp (e.g., obtained from eucalypt, birch, pine, spruce) for micro/nanocellulose production, dedicated crops and agricultural residues can be interesting as raw materials for this purpose. This work aims at achieving microfibrillated cellulose production from fast-growing poplar and olive tree pruning using physical pretreatment (PFI refining) before the microfibrillation stage. Both raw materials yielded microfibrillated cellulose with similar properties to that obtained from a commercial industrial eucalypt pulp, producing films with high mechanical properties and low wettability. According to these properties, different applications for cellulose microfibers suspensions and films are discussed.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 220
Author(s):  
Petar Antov ◽  
Viktor Savov ◽  
Ľuboš Krišťák ◽  
Roman Réh ◽  
George I. Mantanis

The potential of producing eco-friendly, formaldehyde-free, high-density fiberboard (HDF) panels from hardwood fibers bonded with urea-formaldehyde (UF) resin and a novel ammonium lignosulfonate (ALS) is investigated in this paper. HDF panels were fabricated in the laboratory by applying a very low UF gluing factor (3%) and ALS content varying from 6% to 10% (based on the dry fibers). The physical and mechanical properties of the fiberboards, such as water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), internal bond strength (IB), as well as formaldehyde content, were determined in accordance with the corresponding European standards. Overall, the HDF panels exhibited very satisfactory physical and mechanical properties, fully complying with the standard requirements of HDF for use in load-bearing applications in humid conditions. Markedly, the formaldehyde content of the laboratory fabricated panels was extremely low, ranging between 0.7–1.0 mg/100 g, which is, in fact, equivalent to the formaldehyde release of natural wood.


2020 ◽  
Vol 14 (1) ◽  
pp. 84
Author(s):  
Ragil Widyorini ◽  
Ikhwan Syahri ◽  
Greitta Kusuma Dewi

Bambu memiliki kandungan ekstraktif dengan persentase yang berbeda antar jenis bambu. Penelitian ini bertujuan untuk mengetahui pengaruh perlakuan ekstraksi pada jenis bambu yang berbeda terhadap sifat papan partikel. Dua jenis bambu digunakan yaitu Bambu Petung (Dendrocalamus asper) dan Bambu Wulung (Gigantochloa atroviolacea). Perlakuan ekstraksi digunakan pada partikel bambu sebelum proses pembuatan papan partikel yaitu tanpa ekstraksi, ekstraksi air dingin dan ekstraksi air panas. Papan partikel dibuat dalam ukuran 25 cm x 25 cm x 0,7 cm, target kerapatan 0,9 g/cm3, jumlah asam sitrat 30%, serta kondisi pengempaan suhu 180°C selama 10 menit. Hasil penelitian menunjukkan bahwa interaksi perlakuan ekstraksi dan jenis bambu hanya berpengaruh signifikan pada sifat penyerapan air dan keteguhan rekat internal, sedangkan jenis bambu berpengaruh signifikan pada nilai kadar air, modulus patah dan modulus elastisitas. Semua papan partikel yang dihasilkan memenuhi standar Japanese Industrial Standard (JIS) A 5908 tipe 13. Pada penelitian ini, papan partikel dari bambu wulung tanpa perlakuan ekstraksi mempunyai nilai yang memenuhi standar tipe 18 dan berpotensi sebagai bahan baku untuk produk furnitur eksterior. Perlakuan ekstraksi dapat meningkatkan secara signifikan nilai keteguhan rekat internal papan partikel bambu petung, walaupun secara umum dengan jumlah asam sitrat 30% perlakuan tersebut tidak diperlukan pada papan partikel bambu Properties of Particleboard made from Petung Bamboo (Dendrocalamus asper) and Wulung Bamboo (Gigantochloa atroviolacea) Particles with Extraction TreatmentAbstractBamboo has extractives, which the percentage of extractive was different based on bamboo species. This research aimed to investigate the effect of extraction treatment at different bamboo species on the particleboard properties. Two types of bamboo were used, i.e. Petung bamboo (Dendrocalamus asper) and Wulung bamboo (Gigantochloa atroviolacea). Three extraction treatments were conducted to the bamboo particles before the particleboard manufacture, i.e. unextracted, cold-water extraction, and hot-waterextraction. The particleboard was made in the size of 25 cm x 25 cm x 0.7 cm, target density of 0.9 g/cm³, citric acid content of 30%, and pressing temperature of 180°C for 10 min. The results showed that the interaction between extraction treatment and bamboo species significantly affected on the water absorption and internal bond strength, however bamboo species affected significantly on the moisture content, modulus of rupture, and modulus of elasticity. All of particleboards could met the requirement of the 13 type of Japanese Industrial Standard (JIS) A 5908. In this research, particleboards made from wulung bamboo particles without extraction treatment have properties that met the requirement of the 18 type and the products have potential to be as exterior materials for furniture. In general, an extraction treatment was not an important step on the manufacturing of bamboo particleboard using citric acid 30% as adhesive. However, the extraction treatment could increase significantly the internal bond strength of particleboard made from petung bamboo.


2020 ◽  
Vol 17 (2) ◽  
pp. 113-119
Author(s):  
H.E. Mgbemere ◽  
E.O. Obidiegwu ◽  
A.U. Ubong

In this research, kaolin, ball clay, sawdust and rice husk were used to produce insulation bricks through the solid state synthesis method. Two temperatures, 1100oC and 1200oC were used to sinter the green samples. X-ray fluorescence, scanning electron microscopy, compressive strength tests etc. were used to analyse the properties of the produced bricks. Chemical composition analysis on the starting raw materials showed that SiO2 and Al2O3 were the major constituents while Fe2O3, Na2O, K2O and TiO2 were the minor constituents. As the amounts of kaolin used in preparing the samples decrease, the bulk density, modulus of rupture and cold crushing strength of the bricks decreases while the water absorption capacity, linear shrinkage increases. The thermal analysis showed that on heating the samples, the reactions were mainly exothermic with between 8 to 10 mW/mg of heat released. The morphology of the samples showed that the pores began to collapse when the amount of kaolin present is below 70 wt. %. Sintering the samples at 1100oC and 1200oC led to slightly different values in the results and is therefore very significant. Keywords: Insulation bricks, Kaolin, sawdust, rice husk, temperature effects


Sign in / Sign up

Export Citation Format

Share Document