Convective drying of orange pomace at different temperatures and characterization of the obtained powders

Author(s):  
Syeda Muntazima Afrin ◽  
Arijit Acharjee ◽  
Nandan Sit
2013 ◽  
Vol 770 ◽  
pp. 68-71 ◽  
Author(s):  
Supphadate Sujinnapram ◽  
Uraiphorn Termsuk ◽  
Atcharawan Charoentam ◽  
Sutthipoj Sutthana

The nanocrystalline ZnO powders were synthesized by a direct thermal decomposition using zinc nitrate hexahydrate as starting materials. The precursor was characterized by TG-DTA to determine the thermal decomposition and crystallization temperature which was found to be at 325 oC. The precursors were calcined at different temperatures of 400, 500, and 600°C for 4 h. The structure of the prepared samples was studied by XRD, confirming the formation of wurtzite structure. The synthesized powders exhibited the UV absorption below 400 nm (3.10 eV) with a well defined absorption peak at around 285 nm (4.35 eV). The estimated direct bandgaps were obtained to be 3.19, 3.16, and 3.14 eV for the ZnO samples thermally decomposed at 400, 500, and 600°C, respectively.


1983 ◽  
Vol 27 ◽  
Author(s):  
R. Martinella ◽  
G. Chevallard ◽  
C. Tosello

ABSTRACTMechanically polished Ti6Al4V samples were implanted with 100 key nitrogen ions to a fluence of 5.1017 ions/cm2 at two different bulk tenneratures: 370°C and 470°C. Wear tests were carried out with a reciprocating slidina tribotester. Structural modifications and wear morphologies were studied by TEM and SEM. 370°C implanted sample showed the same wear behavior as unimplanted ones, while 470°C implanted sample showed better wear resistance because of a TiN hardened layer. Correlations- between microstructural modifications, wear behavior and mechanisms are reported: results agree with the delamination theory. Comparison with ion- and gas-nitrided samples are presented.


Author(s):  
Ismat Bibi ◽  
Haq Nawaz Bhatti

This study deals with purification and characterization of lignin peroxidase (LiP) isolated from Agaricus bitorqus A66 during decolorization of NOVASOL Direct Black dye. A laboratory scale experiment was conducted for maximum LiP production under optimal conditions. Purification & fractionation of LiP was performed on DEAE-Sepharose ion exchange chromatography followed by Sephadex G-50 gel filtration. The purified LiP has a specific activity of 519 U/mg with 6.73% activity recover. The optimum pH and temperature of purified LiP for the oxidation of veratryl alcohol were 6.8 and 45 °C, respectively. Michaelis-Menten kinetic constants (Vmax and Km) were determined using different concentrations of veratryl alcohol (1-35 mM). The Km and Vmax were 16.67 mM and 179.2 U/mL respectively, for veratryl alcohol oxidation as determined from the Lineweaver-Burk plot. Thermal inactivation studies were carried out at different temperatures to check the thermal stability of the enzyme. Enthalpy of activation decreased where Free energy of activation for thermal denaturation increased at higher temperatures. A possible explanation for the thermal inactivation of LiP at higher temperatures is also discussed.


2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Amir Arifin ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Junaidi Syarif

Hydroxyapatite (HA) has been widely used in biomedical applications due to its excellent biocompatibility. However, Hydroxyapatite possesses poor mechanical properties and only tolerate limited loads for implants. Titanium is well-known materials applied in implant that has advantage in mechanical properties but poor in biocompatibility. The combination of the Titanium alloy and HA is expected to produce bio-implants with good in term of mechanical properties and biocompatabilty. In this work, interaction and mechanical properties of HA/Ti6Al4V was analyzed. The physical and mechanical properties of HA/Ti6Al4V composite powder obtained from compaction (powder metallurgy) of 60 wt.% Ti6Al4V and 40 wt.% HA and sintering at different temperatures in air were investigated in this study. Interactions of the mixed powders were investigated using X-ray diffraction. The hardness and density of the HA/Ti6Al4V composites were also measured. Based on the results of XRD analysis, the oxidation of Ti began at 700 °C. At 1000 °C, two phases were formed (i.e., TiO2 and CaTiO3). The results showed that the hardness HA/Ti6Al4V composites increased by 221.6% with increasing sintering temperature from 700oC to 1000oC. In contrast, the density of the composites decreased by 1.9% with increasing sintering temperature. 


2018 ◽  
Vol 10 (4) ◽  
pp. 96
Author(s):  
Núbia Angélica de Ávila Branquinho ◽  
Fabiano Guimarães Silva ◽  
Osvaldo Resende ◽  
Luiz Cláudio Almeida Barbosa ◽  
Daniel Emanuel Cabral de Oliveira ◽  
...  

The present study assessed the effects of drying at different temperatures (35, 45 and 55 °C) and air velocities (1 and 2 m s-1) on the content and chemical characteristics of Hyptis pectinata essential oil. Drying was conducted in a fixed-bed dryer, and the temperatures and air velocities were controlled and recorded by an automated system. A 350±0.12 g quantity of fresh leaves was used for each of the four repetitions in each dryer. From the material obtained after drying, 60 g of each repetition was used to extract essential oil by the hydrodistillation method. Dichloromethane was used as the solvent, and anhydrous sodium sulfate was used as the desiccating agent. Gas chromatography in the forms of GC-MS and GC-FID were used for the chemical characterization of the essential oil compounds. Decreasing drying times and decreasing concentrations of essential oils were observed with increasing temperatures. A GC-MS analysis of the essential oil from H. pectinata leaves led to the identification of 19 compounds. A sesquiterpene called caryophyllene oxide was the most abundant compound under all drying conditions, with the highest concentration at a temperature of 55 °C, ranging from approximately 42 to 53%.


2006 ◽  
Vol 321-323 ◽  
pp. 913-916
Author(s):  
Sang Ll Lee ◽  
Yun Seok Shin ◽  
Jin Kyung Lee ◽  
Jong Baek Lee ◽  
Jun Young Park

The microstructure and the mechanical property of liquid phase sintered (LPS) SiC materials with oxide secondary phases have been investigated. The strength variation of LPS-SiC materials exposed at the elevated temperatures has been also examined. LPS-SiC materials were sintered at the different temperatures using two types of Al2O3/Y2O3 compositional ratio. The characterization of LPS-SiC materials was investigated by means of SEM with EDS, three point bending test and indentation test. The LPS-SiC material with a density of about 3.2 Mg/m3 represented a flexural strength of about 800 MPa and a fracture toughness of about 9.0 MPa⋅√m.


2016 ◽  
Vol 76 (2) ◽  
pp. 367-373 ◽  
Author(s):  
A. B. Lone ◽  
R. C. Colombo ◽  
B. L. G. Andrade ◽  
L. S. A. Takahashi ◽  
R. T. Faria

Abstract The germination characteristics of the native cactus species are poorly known, being the temperature and the light the factors that the most interferes in that process. Thus, the objective of the present work was to characterize the fruits and evaluate the influence of the temperature and the light in the seed germination of Rhipsalis floccosa, Rhipsalis pilocarpa and Rhipsalis teres. The tested constant temperatures were 15, 20, 25, 30 and 35 °C and the alternate of 20-30 °C and 25-35 °C in a photoperiod of 10 hours, and with determination of the most appropriate temperature, the germination was tested in light absence. The germination percentage, the index of germination speed and medium time of germination were evaluated. For R. floccosa, the highest germination percentage was at 20 °C. For R. pilocarpa and R. teres, the highest germination percentages occurred in 15 °C and 20 °C. There was correlation to germination percentage between the three species, indicating that they had similar germination behavior. Total absence of germination was verified for the three species in condition of light absence. In conclusion, the temperature of 20 °C is the most suitable for the seed germination of R. floccosa. For the species R. pilocarpa and R. teres, the temperatures of 15 and 20 °C are the most suitable.


2019 ◽  
Vol 233 (2) ◽  
pp. 167-182 ◽  
Author(s):  
Anwar Ali ◽  
Nizamul Haque Ansari ◽  
Ummer Farooq ◽  
Shadma Tasneem ◽  
Firdosa Nabi

Abstract The densities, ρ, viscosities, η and specific conductivities κ, of (0.0002, 0.0004, 0.0006 and 0.0008 m) CTAB in 0.1 m aqueous valine, leucine and isoleucine were measured at different temperatures. The measured data were used to calculate various useful thermodynamic parameters. A complete characterization of any mixture can be performed by means of these thermodynamic properties. The apparent molar volume, ϕv, partial molar volume, $\phi _v^0$ and partial molar isobaric expansibilities, $\phi _E^0,$ were calculated using density data. The viscosity data were analyzed using Jones–Dole equation to obtain viscosity coefficients, A- and B-, free energy of activation per mole of solvent, Δμ1°∗, and solute, Δμ2°∗, enthalpy, ΔH∗ and entropy, ΔS∗ of activation of viscous flow. Measuring the changes in these properties has been found to be an excellent qualitative and quantitative way to obtain information regarding the molecular structure and intermolecular interactions occurring in these mixtures. Various structure-making/breaking ability of solute (cetyltrimethylammonium bromide) in presence of aqueous amino acid solutions were discussed. In addition, fluorescence study using pyrene as a photophysical probe has been carried out, the results of which support the conclusions obtained from other techniques.


Foods ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 489 ◽  
Author(s):  
Adriana Antunes-Rohling ◽  
Silvia Calero ◽  
Nabil Halaihel ◽  
Pedro Marquina ◽  
Javier Raso ◽  
...  

The aim of this study was to characterize the spoilage microbiota of hake fillets stored under modified atmospheres (MAP) (50% CO2/50% N2) at different temperatures using high-throughput 16S rRNA gene sequencing and to compare the results with those obtained using traditional microbiology techniques. The results obtained indicate that, as expected, higher storage temperatures lead to shorter shelf-lives (the time of sensory rejection by panelists). Thus, the shelf-life decreased from six days to two days for Batch A when the storage temperature increased from 1 to 7 °C, and from five to two days—when the same increase in storage temperature was compared—for Batch B. In all cases, the trimethylamine (TMA) levels measured at the time of sensory rejection of hake fillets exceeded the recommended threshold of 5 mg/100 g. Photobacterium and Psychrobacter were the most abundant genera at the time of spoilage in all but one of the samples analyzed: Thus, Photobacterium represented between 19% and 46%, and Psychrobacter between 27% and 38% of the total microbiota. They were followed by Moritella, Carnobacterium, Shewanella, and Vibrio, whose relative order varied depending on the sample/batch analyzed. These results highlight the relevance of Photobacterium as a spoiler of hake stored in atmospheres rich in CO2. Further research will be required to elucidate if other microorganisms, such as Psychrobacter, Moritella, or Carnobacterium, also contribute to spoilage of hake when stored under MAP.


Sign in / Sign up

Export Citation Format

Share Document