Compressive strength of pile foundation concrete in permafrost environment in China

2020 ◽  
Vol 247 ◽  
pp. 118431
Author(s):  
Xiaoxiao Wang ◽  
Chang Liu ◽  
Shuguang Liu ◽  
Changwang Yan ◽  
Ju Zhang ◽  
...  
Author(s):  
Diana Che Lat ◽  
Ismacahyadi Bagus Mohamed Jais ◽  
Kamaruzzaman Mohammed ◽  
Bahardin Baharom ◽  
Nastasa Samat ◽  
...  

 Development on soft ground area cannot be avoided at certain area especially nearby coastal or marine area. At urban areas, most of the land has been fully developed and very limited space available, therefore area nearby marine region has to be explored to cater increasing in population in certain country. It is very crucial to stabilize the soft ground before any construction carried out to ensure the structure would be founded on the stable foundation system. Foundation system commonly established for deep soft ground is a pile foundation. There are certain cases whereby pile foundation system failed after completion of structure and the building has been accommodated or been utilized. It causes large settlement which contributes to the failure of structure such as longitudinal crack, sinkholes, beam fractured and so forth. Rectification works have to be done to restore foundation strength thus to prevent further settlement which can cause collapse or major failure of structure. Rectification works that commonly being done nowadays is underpinning pile whereby new pile being installed in between the existing pile to stabilize the foundation and prevent further settlement. This method rather wearisome to be carried out since it involves major excavation and disturbs the existing structure and the surrounding. Therefore it is proposed to carry out Palm Kernel Oil Based Polyurethane (PKO-P) Pile injection to overcome this problem. PKO-P pile injection is a lightweight material to prevent further settlement and the rectification works can be done very fast. No excavation is required and only a small diameter of hole is drilled on the existing slab foundation before injection of PKO-P Pile. PKO-P is a polyurethane processed from palm kernel oil which is renown of the sustainability and green materials. In this research, Unconfined Compression Test been have conducted on few samples of PKO-P materials with different ratio of polyol and isocynate to determine the compressive strength characteristics for PKO-P materials as such to evaluate the performance of the PKO-P for ground improvement. From the test that has been done, the compressive strength achieves its maximum strength at isocynate to polyol ratio of 1:0.75 with maximum compressive strength of 2.3MPa. PKO-P shows rigid characteristics at this maximum strength which produce strong material, able to resist deformation but brittles beyond the maximum stress. With further increasing amount of polyol, PKO-P shows flexible characteristics whereby it undergoes deformation but they tend not to break beyond the maximum stress. Higher elastic modulus recorded for rigid type PKO-P compare to flexible type PKO-P.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhongju Feng ◽  
Jianwei Huo ◽  
Haibo Hu ◽  
Ruixin Zhao ◽  
Fuchun Wang ◽  
...  

This study investigated the corrosion damage and bearing characteristics of bridge pile foundations under a dry-wet-freeze-thaw cycle of composite salt in an alpine salt marsh area using an in situ test, laboratory test, and numerical simulations. The in situ test showed that the dry-wet-freeze-thaw cycle has little effect on the quality of the concrete specimens and rebar. The area of the rebar at a depth of 0.25 m had the highest corrosion rate of 91%. The application of epoxy resin on the surface improved erosion resistance. After one year of outdoor dry-wet-freeze-thaw cycle test, due to the interaction of compound salts, the quality of specimens is reduced under the denudation of chloride ions, while the mass of specimens is increased by the corrosion products formed under the joint action of carbonate and sulfate, resulting in less obvious change of specimen quality, the antierosion coefficient of the specimens decreased, the maximum loss rate of compressive strength was 38.2%, and the pile foundation began to deteriorate. The laboratory test showed that expansive substances, such as Friedel salt, appeared in the concrete specimens of pile foundation during 225 cycles of dry-wet-freeze-thaw cycles, the relative dynamic elastic modulus was reduced by 60.9%, the antierosion coefficient was reduced to 0.51, and the compressive strength loss rate was 65.9%. As such, the pile foundation was seriously damaged. The numerical simulation shows that, with an increase of the peeling thickness and the corrosion depth, the bearing capacity of the pile foundation will gradually decrease after 8 years. Without maintenance, the bearing capacity of a pile foundation will decrease by 34.45% in the 20th year.


2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


2020 ◽  
Vol 9 (1) ◽  
pp. 32-37
Author(s):  
Ruslan Hidayat ◽  
Saiful Arfaah

One of the most important factors in the structure of the pile foundation in the construction of the bridge is the carrying capacity of the soil so as not to collapse. Construction of a bridge in the village of Klitik in Jombang Regency to be built due to heavy traffic volume. The foundation plan to be used is a pile foundation with a diameter of 50 cm, the problem is what is the value of carrying capacity of soil and material. The equipment used is the Dutch Cone Penetrometer with a capacity of 2.50 tons with an Adhesion Jacket Cone. The detailed specifications of this sondir are as follows: Area conus 10 cm², piston area 10 cm², coat area 100 cm², as for the results obtained The carrying capacity of the soil is 60.00 tons for a diameter of 30 cm, 81,667 tons for a diameter of 35 cm, 106,667 tons for a diameter of 40 cm, 150,000 tons for a diameter of 50 cm for material strength of 54,00 tons for a diameter of 30 cm, 73,500 tons for a diameter of 35 cm, 96,00 tons for a diameter of 40 cm, 166,666 tons for a diameter of 50 cm


TAPPI Journal ◽  
2011 ◽  
Vol 10 (7) ◽  
pp. 29-34
Author(s):  
TEEMU PUHAKKA ◽  
ISKO KAJANTO ◽  
NINA PYKÄLÄINEN

Cracking at the fold is a quality defect sometimes observed in coated paper and board. Although tensile and compressive stresses occur during folding, test methods to measure the compressive strength of a coating have not been available. Our objective was to develop a method to measure the compressive strength of a coating layer and to investigate how different mineral coatings behave under compression. We used the short-span compressive strength test (SCT) to measure the in-plane compressive strength of a free coating layer. Unsupported free coating films were prepared for the measurements. Results indicate that the SCT method was suitable for measuring the in-plane compressive strength of a coating layer. Coating color formulations containing different kaolin and calcium carbonate minerals were used to study the effect of pigment particles’ shape on the compressive and tensile strengths of coatings. Latices having two different glass transition temperatures were used. Results showed that pigment particle shape influenced the strength of a coating layer. Platy clay gave better strength than spherical or needle-shaped carbonate pigments. Compressive and tensile strength decreased as a function of the amount of calcium carbonate in the coating color, particularly with precipitated calcium carbonate. We also assessed the influence of styrene-butadiene binder on the compressive strength of the coating layer, which increased with the binder level. The compressive strength of the coating layer was about three times the tensile strength.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (6) ◽  
pp. 24-28
Author(s):  
CORY JAY WILSON ◽  
BENJAMIN FRANK

TAPPI test T811 is the specified method to ascertain ECT relative to box manufacturer’s certification compliance of corrugated fiberboard under Rule 41/ Alternate Item 222. T811 test sample heights were derived from typical board constructions at the time of the test method’s initial development. New, smaller flute sizes have since been developed, and the use of lighter weight boards has become more common. The T811 test method includes sample specifications for typical A-flute, B-flute, and C-flute singlewall (and doublewall and triplewall) structures, but not for newer thinner E-flute or F-flute structures. This research explores the relationship of ECT sample height to measured compressive load, in an effort to determine valid E-flute and F-flute ECT sample heights for use with the T811 method. Through this process, it identifies challenges present in our use of current ECT test methods as a measure of intrinsic compressive strength for smaller flute structures. The data does not support the use of TAPPI T 811 for ECT measurement for E and F flute structures, and demonstrates inconsistencies with current height specifi-cations for some lightweight B flute.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Sign in / Sign up

Export Citation Format

Share Document