Experimental and Numerical Study on a Two-stage Coring Method for Stress Measurement: Application to Deep and High-Temperature Geothermal Wells

Geothermics ◽  
2022 ◽  
Vol 100 ◽  
pp. 102333
Author(s):  
Takatoshi Ito ◽  
Akinobu Kumazawa ◽  
Kazuhiko Tezuka ◽  
Koji Ogawa ◽  
Tatsuya Yokoyama ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4773
Author(s):  
Jianyu Li ◽  
Hong Li ◽  
Zheming Zhu ◽  
Ye Tao ◽  
Chun’an Tang

Geothermal power is being regarded as depending on techniques derived from hydrocarbon production in worldwide current strategy. However, it has artificially been developed far less than its natural potentials due to technical restrictions. This paper introduces the Enhanced Geothermal System based on Excavation (EGS-E), which is an innovative scheme of geothermal energy extraction. Then, based on cohesion-weakening-friction-strengthening model (CWFS) and literature investigation of granite test at high temperature, the initiation, propagation of excavation damaged zones (EDZs) under unloading and the EDZs scale in EGS-E closed to hydrostatic pressure state is studied. Finally, we have a discussion about the further evolution of surrounding rock stress and EDZs during ventilation is studied by thermal-mechanical coupling. The results show that the influence of high temperature damage on the mechanical parameters of granite should be considered; Lateral pressure coefficient affects the fracture morphology and scale of tunnel surrounding rock, and EDZs area is larger when the lateral pressure coefficient is 1.0 or 1.2; Ventilation of high temperature and high in-situ stress tunnel have a significant effect on the EDZs scale; Additional tensile stress is generated in the shallow of tunnel surrounding rock, and the compressive stress concentration transfers to the deep. EDZs experiences three expansion stages of slow, rapid and deceleration with cooling time, and the thermal insulation layer prolongs the slow growth stage.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 52
Author(s):  
José Niño-Mora

We consider the multi-armed bandit problem with penalties for switching that include setup delays and costs, extending the former results of the author for the special case with no switching delays. A priority index for projects with setup delays that characterizes, in part, optimal policies was introduced by Asawa and Teneketzis in 1996, yet without giving a means of computing it. We present a fast two-stage index computing method, which computes the continuation index (which applies when the project has been set up) in a first stage and certain extra quantities with cubic (arithmetic-operation) complexity in the number of project states and then computes the switching index (which applies when the project is not set up), in a second stage, with quadratic complexity. The approach is based on new methodological advances on restless bandit indexation, which are introduced and deployed herein, being motivated by the limitations of previous results, exploiting the fact that the aforementioned index is the Whittle index of the project in its restless reformulation. A numerical study demonstrates substantial runtime speed-ups of the new two-stage index algorithm versus a general one-stage Whittle index algorithm. The study further gives evidence that, in a multi-project setting, the index policy is consistently nearly optimal.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 209
Author(s):  
Xuanming Ji ◽  
Panpan Ge ◽  
Song Xiang ◽  
Yuanbiao Tan

In this work, the effect of double-ageing heat treatments on the microstructural evolution and mechanical behaviour of a metastable β-titanium Ti-3.5Al-5Mo-4V alloy is investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The double-ageing treatments are composed of low-temperature pre-ageing and high-temperature ageing, where the low-temperature pre-ageing is conducted at 300 °C or 350 °C for different times, and the high-temperature ageing is conducted at 500 °C for 8 h. The results show that the phase transformation sequence is altered with the time spent during the first ageing stage, the isothermal ω phase is precipitated in the pre-ageing process of the alloy at 300 °C and 350 °C with the change in the ageing time, and the ω phase is finally transformed into the α phase with the extension of pre-ageing time. The existence time of the ω phase is shortened as the pre-ageing temperature increases. The microhardness of the alloy increases with increasing pre-ageing time and temperature. Compared with single-stage ageing, the ω phase formed in the pre-ageing stage changes the response to subsequent high-temperature ageing. After the two-stage ageing treatment, the precipitation size of the α phase is obviously refined after the double-ageing treatment. A microhardness test shows that the microhardness of the two-stage aged alloy increases with extended pre-ageing time.


Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122061
Author(s):  
Yuya Ono ◽  
Yuka Fukuda ◽  
Yuya Sumitani ◽  
Yoshiya Matsukawa ◽  
Yasuhiro Saito ◽  
...  

Author(s):  
J. Stengele ◽  
H.-J. Bauer ◽  
S. Wittig

The understanding of multicomponent droplet evaporation in a high pressure and high temperature gas is of great importance for the design of modern gas turbine combustors, since the different volatilities of the droplet components affect strongly the vapor concentration and, therefore, the ignition and combustion process in the gas phase. Plenty of experimental and numerical research is already done to understand the droplet evaporation process. Until now, most numerical studies were carried out for single component droplets, but there is still lack of knowledge concerning evaporation of multicomponent droplets under supercritical pressures. In the study presented, the Diffusion Limit Model is applied to predict bicomponent droplet vaporization. The calculations are carried out for a stagnant droplet consisting of heptane and dodecane evaporating in a stagnant high pressure and high temperature nitrogen environment. Different temperature and pressure levels are analyzed in order to characterize their influence on the vaporization behavior. The model employed is fully transient in the liquid and the gas phase. It accounts for real gas effects, ambient gas solubility in the liquid phase, high pressure phase equilibrium and variable properties in the droplet and surrounding gas. It is found that for high gas temperatures (T = 2000 K) the evaporation time of the bicomponent droplet decreases with higher pressures, whereas for moderate gas temperatures (T = 800 K) the lifetime of the droplet first increases and then decreases when elevating the pressure. This is comparable to numerical results conducted with single component droplets. Generally, the droplet temperature increases with higher pressures reaching finally the critical mixture temperature of the fuel components. The numerical study shows also that the same tendencies of vapor concentration at the droplet surface and vapor mass flow are observed for different pressures. Additionally, there is almost no influence of the ambient pressure on fuel composition inside the droplet during the evaporation process.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hongyan Li ◽  
Pengtao Wang ◽  
Bin Liu ◽  
Xianyu Zhang ◽  
Hai Huang ◽  
...  

When the typically utilized method for detecting the drilling conditions of high-temperature geothermal wells is applied, the detection takes a long time, the detection results are inconsistent with the actual conditions, and there are problems such as low detection efficiency and large detection deviation. Therefore, a method for detecting the drilling conditions of high-temperature geothermal wells described by a unit quaternion is proposed. Based on quaternion theory, the quaternion model of the position and attitude is constructed to obtain the drilling attitude. According to the analysis results and the basic principle of kernel principal component analysis, a model is built to realize the detection of high-temperature geothermal well drilling conditions. The experimental results show that in many iterations, the time required is stable and lower than that of other comparison methods, and the detection errors are all lower than 10%. The proposed method has high detection efficiency and low detection errors.


2020 ◽  
Vol 32 (12) ◽  
pp. 4259
Author(s):  
Win-Jet Luo ◽  
Jin-Chang Lai ◽  
Ming-Chu Hsieh ◽  
I-Hsing Huang

Sign in / Sign up

Export Citation Format

Share Document