The correlation of tear deviation and resistance with the bound rubber content in rubber-silica composites

2020 ◽  
Vol 90 ◽  
pp. 106762
Author(s):  
Mohammad Alimardani ◽  
Mehdi Razzaghi-Kashani
Keyword(s):  
2018 ◽  
Vol 91 (2) ◽  
pp. 453-468 ◽  
Author(s):  
Hong-Yuan Ren ◽  
Zheng Sun ◽  
Li-Qun Zhang ◽  
You-Ping Wu ◽  
Qiang Huang ◽  
...  

ABSTRACT Two silane coupling agents, bis-(γ-triethoxysilylpropyl)-tetrasulfide (Si69) and vinyltriethoxysilane (A151), were selected to investigate their effects on structure and properties of silica-filled methyl vinyl silicone rubber (VMQ)/emulsion styrene butadiene rubber (ESBR) composites. The filler–rubber interactions were investigated via bound rubber content and solid-state 1H low-field nuclear magnetic resonance (NMR) spectroscopy, and the mass ratio of VMQ and ESBR in the rubber–filler gel was investigated by thermogravimetric analysis (TGA). The results revealed that VMQ showed a better compatibility with silica than ESBR. Compared with the A151 composite, the composite with Si69 showed the higher content of ESBR in rubber–filler gel, which resulted in the higher bound rubber content and the weaker Payne effect, and it also exhibited higher tensile strength, higher tear strength, better wear resistance, and lower hardness. However, the presence of Si69 reduced the crosslink efficiency of ESBR and completely inhibited the crosslinking of VMQ, which caused the composite to show higher tan δ value at 60 °C than the A151 composite.


2016 ◽  
Vol 717 ◽  
pp. 3-8 ◽  
Author(s):  
Ji Wen Liu ◽  
Tao Zhuang ◽  
Guang Shui Yu ◽  
Shu Gao Zhao

The effects of rotor speed and discharging temperature on silica 1165MP-SSBR 5025-2 interaction as well as the mechanical properties and dynamic viscoelasticity are investigated in this work. The result shows that the discharging temperature increases linearly with increase of rotation speed, leading to increase of bound rubber content. The tensile strength, elongation at break and tear strength increase firstly, and then decrease with increase of rotation speed. However, the strength at 100% and 300% deformation decrease, and then they increase. The wet skid resistance of SSBR5025-2 filled with silica 1165MP improves with increase of rotation speed and discharging temperature, and the rolling resistance decreases.


2017 ◽  
Vol 90 (4) ◽  
pp. 651-666 ◽  
Author(s):  
C. Hayichelaeh ◽  
L. A. E. M. Reuvekamp ◽  
W. K. Dierkes ◽  
A. Blume ◽  
J. W. M. Noordermeer ◽  
...  

ABSTRACT Diphenyl guanidine (DPG) is the most commonly used secondary accelerator in silica-reinforced rubber compounds because of its additional positive effect on the silanization reaction and deactivation of free silanol groups that are left over after the silanization. However, because of health and safety concerns about the use of DPG, which decomposes to give highly toxic aniline during high processing temperature, safe alternatives are required. This work investigates the effect of various types of aliphatic amines having alkyl or cyclic structures and similar pKa (i.e., hexylamine [HEX], decylamine [DEC], octadecylamine [OCT], cyclohexylamine [CYC], dicyclohexylamine [DIC], and quinuclidine [QUI]) on the properties of silica-reinforced natural rubber (NR) compounds by taking the ones with DPG and without amine as references. When compared with the compound without amine, the use of all amine types reduces filler–filler interaction (i.e., the Payne effect) and enhances filler–rubber interaction, as indicated by bound rubber content and decreased heat capacity increment. The amines with alkyl chains can reduce the Payne effect and enhance cure rate to a greater extent compared with the amines with cyclic rings as a result of better accessibility toward the silica surface and a shielding effect because of less steric hindrance. The longer carbon tails on linear aliphatic amines ranging from HEX, DEC, to OCT lead to a lower Payne effect, lower heat capacity increment, higher bound rubber content, and higher modulus as well as tensile strength. Overall, the use of OCT provides silica-reinforced NR compounds with properties closest to the reference one with DPG and can act as a potential alternative for DPG.


1993 ◽  
Vol 66 (2) ◽  
pp. 163-177 ◽  
Author(s):  
Siegfried Wolff ◽  
Meng-Jiao Wang ◽  
Ewe-Hong Tan

Abstract SBR compounds were filled with 17 carbon blacks covering the whole range of rubber grades and tested for bound-rubber content. It was found that the bound-rubber content of a polymer at high loadings is higher for large surface-area carbon blacks. On the other hand, the bound-rubber content per unit of interfacial area in the compound (specific bound-rubber content) decreases with increasing specific surface area and filler loading. This observation was interpreted in terms of interaggregate multiple molecular adsorption, filler agglomeration, and change of molecular weight of rubber during mixing. When the comparison was carried out at critical loading of a coherent mass, the specific bound-rubber content was found to be higher for the high-surface-area products which are characterized by high surface energies. The critical loading of coherent mass of bound rubber also shows a strong surface-area dependence, indicating that large particle carbon blacks give high critical loadings. The measurements of bound rubber at high temperatures for carbon-black-filled compounds and in an ammonia atmosphere for silica-filled compounds suggest that bound rubber is caused essentially by physical adsorption.


1992 ◽  
Vol 65 (2) ◽  
pp. 329-342 ◽  
Author(s):  
Siegfried Wolff ◽  
Meng-Jiao Wang

Abstract Carbon black N110 and a precipitated silica, which have comparable surface area and structure, were selected as model fillers to study the effect of filler surface energies on rubber reinforcement. In comparison with carbon black, the surface energies of silica are characterized by a lower dispersive component, γsd, and higher specific component, γssp. It was found that the high γssp of silica leads to strong interaggregate interaction, resulting in higher viscosity of the compounds, higher αƒ, and higher moduli of the vulcanizates at small strain. The higher γsd of carbon black, in contrast, causes strong filler—polymer interaction, which is reflected in a higher bound-rubber content of the compounds and higher moduli of the vulcanizates at high elongation.


2009 ◽  
Vol 82 (5) ◽  
pp. 473-491 ◽  
Author(s):  
M. Tiwari ◽  
R. N. Datta ◽  
A. G. Talma ◽  
J. W. M. Noordermeer ◽  
W. K. Dierkes ◽  
...  

Abstract The surface characteristics of silica were modified by plasma-thiophene and -acetylene film deposition. The plasma-coated fillers were blended with S-SBR and EPDM, and their influence on the final vulcanizate properties was compared with untreated silica and silanized silica. The change in the surface energy of plasma-acetylene (PA) and thiophene- (PTh) coated silica was characterized by immersion tests in liquids of various surface tension, water penetration measurements, Thermo Gravimetric Analysis (TGA) and Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). All techniques gave evidence of a polymeric PA- and PTh-film deposition on the surface of silica. The properties of S-SBR and EPDM, filled with untreated, PA-, PTh- and silane-treated silica, were investigated by measurement of the Payne effect, bound rubber content and weight loss related to bound rubber, the reinforcement parameter, relative ranking of cross-link density and mechanical properties. The results show a lower degree of flocculation for PTh-silica filled EPDM due to a better match of the surface energies compared to untreated and PA-treated silica. EPDM filled with plasma-thiophene coated silica shows the lowest reinforcement parameter value, thus improved dispersion compared to untreated, silane-treated and plasma-acetylene silica. However, PA-silica filled EPDM shows better mechanical properties compared to untreated and plasma-thiophene coated silica. The PTh-silica filled S-SBR shows a higher bound rubber content, which results in better mechanical properties of the S-SBR compound compared to the one with PA-coated silica. The overall results show that the compatibility and interaction of silica with different rubbers can be controlled by tailoring the surface energy of the filler by plasma-polymerization. The different functionalities on the silica surface result in different levels of compatibility and interaction, as well as final vulcanizates properties.


2010 ◽  
Vol 83 (4) ◽  
pp. 404-426 ◽  
Author(s):  
W. K. Dierkes ◽  
M. Tiwari ◽  
R. N. Datta ◽  
A. G. Talma ◽  
J. W. M. Noordermeer ◽  
...  

Abstract Rubber reinforcement by fillers is primarily based on filler structure and surface properties. A chemical change of the surface properties while maintaining the structure allows tailoring filler properties for improved filler–polymer compatibility, resulting in improved morphological, dynamic, and mechanical properties of straight rubbers as well as elastomer blends. Plasma polymerization based on acetylene, pyrrole, and thiophene as monomers are applied to silica in order to change surface polarity and chemistry, with untreated and silane-treated silica as references. Generally spoken, the plasma coating results in reduced filler–filler interaction, improved dispersion, and increased bound rubber content in straight SBR as well as in SBR/EPDM blends. In terms of stress-strain properties, the plasma treatment results in higher moduli compared to the untreated filler. The most prominent effect was found in the stress-strain properties of straight SBR: Polythiophene-coated silica results in significantly higher moduli and tensile strength values, even higher than the silane-treated material. In the case of the polymer blend, the plasma treatment results in higher tensile strength and elongation at break values. It is important to note that no unambiguous correlation was found between filler–filler interaction and filler–polymer interaction: A lower Payne-effect does not necessarily result in a higher bound rubber content.


2016 ◽  
Vol 89 (4) ◽  
pp. 640-652 ◽  
Author(s):  
Manuchet Nillawong ◽  
Pongdhorn Sae-oui ◽  
Krisda Suchiva ◽  
Chakrit Sirisinha

ABSTRACT Compounds of SBR incorporated with hybrid filler of carbon black (CB) and aramid pulp were prepared. The ratio of CB to aramid pulp was varied and its effects on viscoelastic and mechanical properties of the rubber were investigated. Two aramid pulp types were used in this study: conventional aramid pulp (CAP) and the predispersed aramid pulp (PAP). The rubber–filler interaction as indicated by bound rubber content decreases with increasing aramid pulp loading, regardless of the aramid pulp type. This results in a decrease in tensile and abrasion properties with increasing fiber loading. The energy dissipation properties of the hybrid composites are also poorer than those of the CB/SBR composite, as reflected by the heat buildup values. Use of predispersed aramid fiber resulted in improved dispersion of the fiber in SBR. Thus, Mooney viscosities of the PAP-filled systems are lower than those of the CAP-filled systems, but the percentages of elongation at breaks are higher. The distinct feature of aramid fiber/CB hybrid SBR composites is their high moduli over an extended range of temperatures up to 80°C that is unattainable with the use of CB alone.


2021 ◽  
pp. 009524432110635
Author(s):  
Gopika Sudhakaran ◽  
Shanti A Avirah

Maleic anhydride was chemically attached to depolymerized natural rubber, and the product was named as carboxy-terminated liquid natural rubber (CTNR). The CTNR can act as a potential plasticizer in chloroprene (CR) vulcanizates. This paper describes the use of commercial nano silica (NS) as a promising cost-effective filler, which can enhance the tensile properties and ageing resistance of the CR vulcanizates incorporated with CTNR (CR-CTNR). The enhancement in properties may be attributed to the increased bound-rubber content owing to the large surface area of the nano-sized filler. The characteristics of the NS-filled CR vulcanizates containing CTNR (NS CR-CTNR) were compared with those containing amorphous silica. The NS CR-CTNR vulcanizates showed superior ageing and oil resistance due to the finer rubber filler interaction modified by ionic cross linking.


1974 ◽  
Vol 2 (3) ◽  
pp. 211-228 ◽  
Author(s):  
G. R. Cotten ◽  
E. M. Dannenberg

Abstract Prediction of tread wear from laboratory tests can be a valuable guide in the development of improved carbon blacks and controlling the quality of normal production. We have developed two tests which give good correlation with actual road wear data on over 100 experimental blacks. One test involves running Akron angle abrasion on a compound with only 30 phr of carbon black where differences in abrasion resistance are magnified. The other test measures surface activity towards the polymer by determining bound rubber content of a heat-treated nonproductive mix. By using both tests together, tread wear ratings of blacks used in this study could be predicted almost as well as by a single, controlled, multisectional road test with five tires run for 8000–10,000 miles.


Sign in / Sign up

Export Citation Format

Share Document