An integrated DFT solution for power reduction in scan test applications by low power gating scan cell

Integration ◽  
2017 ◽  
Vol 57 ◽  
pp. 108-124 ◽  
Author(s):  
Mahshid Mojtabavi Naeini ◽  
Sreedharan Baskara Dass ◽  
Chia Yee Ooi ◽  
Tomokazu Yoneda ◽  
Michiko Inoue
Author(s):  
ASHWIN R ◽  
SAROJA S BHUSARE

Advanced Encryption Standard (AES), has received significant interest over the past decade due to its performance and security level. Low power devices have gained extreme importance in market today. Power dissipation is one of the most important design constraints to be handled well. A key to successful power management is automatic power reduction. This enables designers to meet their power budgets without adversely affecting their productivity or time to market. In this paper power gating techniques applied on AES crypto-processor is depicted. The goal of power gating is to minimize leakage power by temporarily cutting power off to selective blocks that are not required in the current operation. This AES design was implemented using Verilog HDL and synthesized with Synopsys DC Compiler using Nangate 45 nm open cell library, physical design implementation and power gating was performed using SOC Encounter and achieved a power reduction up to 40%.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6111
Author(s):  
Sangjun Lee ◽  
Kyunghwan Cho ◽  
Jihye Kim ◽  
Jongho Park ◽  
Inhwan Lee ◽  
...  

Cryptographic circuits generally are used for applications of wireless sensor networks to ensure security and must be tested in a manufacturing process to guarantee their quality. Therefore, a scan architecture is widely used for testing the circuits in the manufacturing test to improve testability. However, during scan testing, test-power consumption becomes more serious as the number of transistors and the complexity of chips increase. Hence, the scan chain reordering method is widely applied in a low-power architecture because of its ability to achieve high power reduction with a simple architecture. However, achieving a significant power reduction without excessive computational time remains challenging. In this paper, a novel scan correlation-aware scan cluster reordering is proposed to solve this problem. The proposed method uses a new scan correlation-aware clustering in order to place highly correlated scan cells adjacent to each other. The experimental results demonstrate that the proposed method achieves a significant power reduction with a relatively fast computational time compared with previous methods. Therefore, by improving the reliability of cryptography circuits in wireless sensor networks (WSNs) through significant test-power reduction, the proposed method can ensure the security and integrity of information in WSNs.


Author(s):  
Diksha Siddhamshittiwar

Static power reduction is a challenge in deep submicron VLSI circuits. In this paper 28T full adder circuit, 14T full adder circuit and 32 bit power gated BCD adder using the full adders respectively were designed and their average power was compared. In existing work a conventional full adder is designed using 28T and the same is used to design 32 bit BCD adder. In the proposed architecture 14T transmission gate based power gated full adder is used for the design of 32 bit BCD adder. The leakage supremacy dissipated during standby mode in all deep submicron CMOS devices is reduced using efficient power gating and multi-channel technique. Simulation results were obtained using Tanner EDA and TSMC_180nm library file is used for the design of 28T full adder, 14T full adder and power gated BCD adder and a significant power reduction is achieved in the proposed architecture.


2011 ◽  
Vol 10 (11) ◽  
pp. 2161-2167 ◽  
Author(s):  
Jianping Hu ◽  
Xiaoying Yu ◽  
Jindan Chen

2018 ◽  
Vol 7 (2.7) ◽  
pp. 863
Author(s):  
Damarla Paradhasaradhi ◽  
Kollu Jaya Lakshmi ◽  
Yadavalli Harika ◽  
Busa Ravi Teja Sai ◽  
Golla Jayanth Krishna

In deep sub-micron technologies, high number of transistors is mounted onto a small chip area where, SRAM plays a vital role and is considered as a major part in many VLSI ICs because of its large density of storage and very less access time. Due to the demand of low power applications the design of low power and low voltage memory is a demanding task. In these memories majority of power dissipation depends on leakage power. This paper analyzes the basic 6T SRAM cell operation. Here two different leakage power reduction approaches are introduced to apply for basic 6T SRAM. The performance analysis of basic SRAM cell, SRAM cell using drowsy-cache approach and SRAM cell using clamping diode are designed at 130nm using Mentor Graphics IC Studio tool. The proposed SRAM cell using clamping diode proves to be a better power reduction technique in terms of power as compared with others SRAM structures. At 3.3V, power saving by the proposed SRAM cell is 20% less than associated to basic 6T SRAM Cell.


Sign in / Sign up

Export Citation Format

Share Document