scholarly journals 362. rAAV-Mediated Delivery of Micro RNA Scavengers Leads to Efficient and Stable Knock-Down of Cognate Micro RNAs, Upregulation of Their Natural Target Genes and Phenotypic Changes in Mice

2010 ◽  
Vol 18 ◽  
pp. S140
Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Kumar Vaibhav ◽  
Shannon Williams ◽  
Sumbul Fatima ◽  
Babak Baban ◽  
Krishnan M Dhandapani ◽  
...  

Background: Micro RNAs (miRNAs) could target multiple mRNAs, repressing the protein translation. We report acute changes in humoral miRNAome in a murine thromboembolic stroke model (eMCAo), and demonstrate the benefits of miRNA therapy in improving cerebral blood flow (CBF). Methods: Non-biased micro RNA (miRNA) array and bioinformatics analysis was performed in plasma collected at 4h post-eMCAo from male mice (C57/B6, 16-weeks). Individual PCR for miRNAs was also performed in brain tissues at 24h post-eMCAo. Moreover, frozen human plasma samples collected at ~4.5h post-stroke were also used for miRNA analysis. Finally, the miRNA mimic that was predicted to target genes of our interest was also tested in vivo and in vitro . Results: Principal component analysis (PCA) of the miRNA-array showed ~68% variance in the humoral miRNAome 4h after eMCAo in mice, and a significant change in Stroke vs. Sham groups (Cut off value >2 fold; p<0.05). Of interest, the hairpin precursor of miR-449b was downregulated (~2.35 fold, p<0.05) at 4h post-eMCAo, while the mature miR-449b was also significantly reduced at 24h post-eMCAo. Mature miR-449b was significantly reduced in human stroke plasma, too. In human brain endothelial cells, miR-449b mimic downregulated gene expressions of both plasminogen activator inhibitor (PAI-1) and alpha 2- antiplasmin (α-AP) only in hypoxia but not during normoxia. Therefore, we finally tested the cholesterol-conjugated miR-449b mimic in the murine eMCAo model. Pre-treatment with miR-449b mimic (8 mg/kg bwt) increased the absolute CBF and reduced edema (as determined by MRI), and also improved the neurological outcomes and reduced % infarct volume (p<0.05). Results: The miR-449b mimic could be a possible therapy to suppress aberrant gene expressions of PAI-1 and α-AP, which will allow more spontaneous reperfusion and benefits from low dose tPA.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e13516-e13516
Author(s):  
Inna A. Novikova ◽  
Natalya N. Timoshkina ◽  
Oleg Ivanovich Kit ◽  
Sergey I. Poluektov ◽  
Andrey V. Dashkov ◽  
...  

e13516 Background: The colorectal cancer (CRC) incidence is steadily increasing. Moreover, the problem of its early diagnosis remains unresolved due to the low specificity of known tumor markers, and the problem of creating new therapeutic approaches is due to the lack of a complete understanding of the mechanisms of regulation of gene expression in this oncopathology. The study of micro-RNAs (short non-coding RNAs that regulate gene expression) can be the solution to both problems. The aim of the study was to analyze micro-RNA differential expression in the tumor and non-tumor tissues of CRC patients. Methods: 5 patients with CRC (colon adenocarcinoma, G2) were selected for the multiple parallel micro-RNA sequencing. The mirVana miRNA Isolation Kit protocol was used to isolate small RNA fractions. The miRNA library was prepared using the TruSeq Small RNASample Preparation Kit. Sequencing of the nucleotide sequences of cDNA libraries was performed using a MiSeq (Illumina, USA). The copy numbers of micro-RNA were determined by comparing the nucleotide sequence of the sequenced molecules in each sample with the known nucleotide sequences of micro-RNA presented in the databases. When analyzing the differential expression of micro-RNA, the DESeq2 method implemented in R medium was used. Results: Six differentially expressed micro-RNAs were detected (p < 0.05): 2 that decrease expression (hsa-miR-143-3p,hsa-miR-26a-5p) and 4 increase expression in the tumor relative to non-tumor (hsa-miR-25-3p, hsa-miR-92a-3p, hsa-miR-21-5p, hsa-let-7i-5p). The highest level of expression in both tumor and non-tumor tissue was observed for hsa-miR-143-3p, the lowest one for hsa-let-7i-5p. Moreover, the largest difference in micro-RNA expression in tumor tissue relative to non-tumor was shown for hsa-miR-92a-3p (4.5 times, p = 0.02), the smallest for hsa-miR-143-3p (2.4 times, p = 0.04). For miRNAs that differentially changed their expression, a search was made for target genes using the miRWalk 3.0 database. 14573 target genes were found, of which 3346 were for hypo-expressed micro-RNAs and 11228 for hyper-expressed micro-RNAs. Conclusions: Sequencing revealed 6 differentially expressed micro-RNAs (hsa-miR-143-3p, hsa-miR-26a-5p, hsa-miR-25-3p, hsa-miR-92a-3p, hsa-miR-21-5p, hsa-let-7i-5p) in the tumor tissue is relatively non-tumor tissues of the colon. The data obtained expand the understanding of the mechanisms of gene regulation in the context of this oncopathology and may possibly become the basis for highly specific tumor markers panel.


2017 ◽  
Vol 63 (6) ◽  
pp. 481-498
Author(s):  
O.I. Kit ◽  
D.I. Vodolazhsky ◽  
E.E. Rostorguev ◽  
D.H. Porksheyan ◽  
S.B. Panina

Gliomas are invasive brain tumors with high rates of recurrence and mortality. Glioblastoma multiforme (GBM) is the most deadly form of glioma with nearly 100% rate of recurrence and unfavorable prognosis in patients. Micro-RNAs (miR) are the class of wide-spread short non-coding RNAs that inhibit translation via binding to the mRNA of target genes. The aim of the present review is to analyze recent studies and experimental results concerning aberrant expression profiles of miR, which target components of the signaling pathways Hedgehog, Notch, Wnt, EGFR, TGFb, HIF1a in glioma/glioblastoma. Particularly, the interactions of miR with targets of 2-hydroxyglutarate (the product of mutant isocytrate dehydrogenase, R132H IDH1, which is specific for the glioma pathogenesis) have been considered in the present review. Detecting specific miRNAs in tissue and serum may serve as a diagnostic and prognostic tool for glioma, as well as for predicting treatment response of an individual patient, and potentially serving as a mechanism for creating personalized treatment strategies


Author(s):  
Benoit Forget ◽  
Elena Martin Garcia ◽  
Arthur Godino ◽  
Laura Domingo Rodriguez ◽  
Vincent Kappes ◽  
...  

AbstractThe persistent and experience-dependent nature of drug addiction may result in part from epigenetic alterations, including non-coding micro-RNAs (miRNAs), which are both critical for neuronal function and modulated by cocaine in the striatum. Two major striatal cell populations, the striato-nigral and striato-pallidal projection neurons, express, respectively, the D1 (D1-SPNs) and D2 (D2-SPNs) dopamine receptor, and display distinct but complementary functions in drug-evoked responses. However, a cell-type-specific role for miRNAs action has yet to be clarified. Here, we evaluated the expression of a subset of miRNAs proposed to modulate cocaine effects in the nucleus accumbens (NAc) and dorsal striatum (DS) upon sustained cocaine exposure in mice and showed that these selected miRNAs were preferentially upregulated in the NAc. We focused on miR-1 considering the important role of some of its predicted mRNA targets, Fosb and Npas4, in the effects of cocaine. We validated these targets in vitro and in vivo. We explored the potential of miR-1 to regulate cocaine-induced behavior by overexpressing it in specific striatal cell populations. In DS D1-SPNs miR-1 overexpression downregulated Fosb and Npas4 and reduced cocaine-induced CPP reinstatement, but increased cue-induced cocaine seeking. In DS D2-SPNs miR-1 overexpression reduced the motivation to self-administer cocaine. Our results indicate a role of miR1 and its target genes, Fosb and Npas4, in these behaviors and highlight a precise cell-type- and region-specific modulatory role of miR-1, illustrating the importance of cell-specific investigations.


Author(s):  
Fariba Boroumand ◽  
Iraj Saadat ◽  
Mostafa Saadat

Abstract Background Micro-RNA (miRNA) is one of the non-coding RNAs that exist in human genome. miRNAs play an important role in the expression of target genes. Several studies have indicated that organization of human genome is not random. In order to investigate the distribution of miRNAs on human chromosomes, the present study was carried out. Results Using the data from miRBase database, we found 1913 loci coding for miRNAs (MIRs). Human chromosome bands 1p36, 1q22, 1q24, 2q13, 2q35, 3p21, 6p21, 7q22, 8p23, 8q24, 9q22, 9q34, 11q12-q13, 12q13, 14q32, 16p13, 16q24, 17p13, 17q11, 17q21, 17q25, 19p13, 19q13, 20q13, 21p11, 22q13, and Xq26-q28 were significantly bearing higher number of MIRs. The 14q32 and 19q13 with 4.11 and 3.59 MIRs per mega-base pair, respectively, were the most MIR-richest human chromosomal bands. The number of MIRs on chromosomal bands significantly decreased as a function of distance from telomere (r = − 0.949, df = 5, P = 0.001). Conclusions Our current data suggest that MIRs are not randomly distributed on human genomes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samina Shabbir ◽  
Prerona Boruah ◽  
Lingli Xie ◽  
Muhammad Fakhar-e-Alam Kulyar ◽  
Mohsin Nawaz ◽  
...  

AbstractOvary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-β and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.


2021 ◽  
Vol 22 (11) ◽  
pp. 6022
Author(s):  
Sylwia Ciesielska ◽  
Izabella Slezak-Prochazka ◽  
Patryk Bil ◽  
Joanna Rzeszowska-Wolny

In living cells Reactive Oxygen Species (ROS) participate in intra- and inter-cellular signaling and all cells contain specific systems that guard redox homeostasis. These systems contain both enzymes which may produce ROS such as NADPH-dependent and other oxidases or nitric oxide synthases, and ROS-neutralizing enzymes such as catalase, peroxiredoxins, thioredoxins, thioredoxin reductases, glutathione reductases, and many others. Most of the genes coding for these enzymes contain sequences targeted by micro RNAs (miRNAs), which are components of RNA-induced silencing complexes and play important roles in inhibiting translation of their targeted messenger RNAs (mRNAs). In this review we describe miRNAs that directly target and can influence enzymes responsible for scavenging of ROS and their possible role in cellular redox homeostasis. Regulation of antioxidant enzymes aims to adjust cells to survive in unstable oxidative environments; however, sometimes seemingly paradoxical phenomena appear where oxidative stress induces an increase in the levels of miRNAs which target genes which are supposed to neutralize ROS and therefore would be expected to decrease antioxidant levels. Here we show examples of such cellular behaviors and discuss the possible roles of miRNAs in redox regulatory circuits and further cell responses to stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenrui Duan ◽  
Shirley Tang ◽  
Li Gao ◽  
Kathleen Dotts ◽  
Andrew Fink ◽  
...  

AbstractThe Fanconi Anemia (FA) pathway is essential for human cells to maintain genomic integrity following DNA damage. This pathway is involved in repairing damaged DNA through homologous recombination. Cancers with a defective FA pathway are expected to be more sensitive to cross-link based therapy or PARP inhibitors. To evaluate downstream effectors of the FA pathway, we studied the expression of 734 different micro RNAs (miRNA) using NanoString nCounter miRNA array in two FA defective lung cancer cells and matched control cells, along with two lung tumors and matched non-tumor tissue samples that were deficient in the FA pathway. Selected miRNA expression was validated with real-time PCR analysis. Among 734 different miRNAs, a cluster of microRNAs were found to be up-regulated including an important cancer related micro RNA, miR-200C. MiRNA-200C has been reported as a negative regulator of epithelial-mesenchymal transition (EMT) and inhibits cell migration and invasion by promoting the upregulation of E-cadherin through targeting ZEB1 and ZEB2 transcription factors. miRNA-200C was increased in the FA defective lung cancers as compared to controls. AmpliSeq analysis showed significant reduction in ZEB1 and ZEB2 mRNA expression. Our findings indicate the miRNA-200C potentially play a very important role in FA pathway downstream regulation.


Blood ◽  
2011 ◽  
Vol 118 (3) ◽  
pp. 795-803 ◽  
Author(s):  
Katia Urso ◽  
Arantzazu Alfranca ◽  
Sara Martínez-Martínez ◽  
Amelia Escolano ◽  
Inmaculada Ortega ◽  
...  

Abstract The nuclear factor of activated T cells (NFAT) family of transcription factors plays important roles in many biologic processes, including the development and function of the immune and vascular systems. Cells usually express more than one NFAT member, raising the question of whether NFATs play overlapping roles or if each member has selective functions. Using mRNA knock-down, we show that NFATc3 is specifically required for IL2 and cyclooxygenase-2 (COX2) gene expression in transformed and primary T cells and for T-cell proliferation. We also show that NFATc3 regulates COX2 in endothelial cells, where it is required for COX2, dependent migration and angiogenesis in vivo. These results indicate that individual NFAT members mediate specific functions through the differential regulation of the transcription of target genes. These effects, observed on short-term suppression by mRNA knock-down, are likely to have been masked by compensatory effects in gene-knockout studies.


Author(s):  
Duong Ngoc Diem Nguyen ◽  
William M Chilian ◽  
Shamsul Mohd Zain ◽  
Muhammad Fauzi Daud ◽  
Yuh Fen Pung

Cardiovascular disease (CVD) is among the leading causes of death worldwide. Micro-RNAs (miRNAs), regulatory molecules that repress protein expression, have attracted considerable attention in CVD research. The vasculature plays a big role in CVD development and progression and dysregulation of vascular cells underlies the root of many vascular diseases. This review provides a brief introduction of the biogenesis of miRNAs and exosomes, followed by overview of the regulatory mechanisms of miRNAs in vascular smooth muscle cells (VSMCs) intracellular signaling during phenotypic switching, senescence, calcification and neointimal hyperplasia. Evidence of extracellular signaling of VSMCs and other cells via exosomal and circulating miRNAs was also presented. Lastly, current drawbacks and limitations of miRNA studies in CVD research and potential ways to overcome these disadvantages were discussed in detail. In-depth understanding of VSMC regulation via miRNAs will add substantial knowledge and advance research in diagnosis, disease progression and/or miRNA-derived therapeutic approaches in CVD research.


Sign in / Sign up

Export Citation Format

Share Document