scholarly journals Immunomodulatory properties of milk

2000 ◽  
Vol 84 (S1) ◽  
pp. 81-89 ◽  
Author(s):  
Martin L. Cross ◽  
H. S. Gill

There is increasing commercial interest in the production of functional foodstuffs which have health-promoting properties. Over the last five to ten years, significant progress has been made in the identification and characterisation of bovine milk components that can affect the function of the immune system. This review outlines the major components of bovine milk that have been shown to modulate immune function, and discusses experimental approaches to the identification of various facets of the immune response that are known to be affected by milk-derived proteins.

2014 ◽  
Vol 32 (No. 3) ◽  
pp. 205-212 ◽  
Author(s):  
A. Patel ◽  
N. Shah

Food allergy is an adverse immune response to some proteins in some foods. Probiotic, health promoting bacteria have gained much importance because of their innumerable benefits, particularly in the treatment of diarrhea, hypercholesterolemia, atopic dermatitis, eczema, and gastrointestinal disorders by strengthening the immune system. The current paper reviews recent advances made in the treatment of food allergy through employing probiotic or synbiotic therapy. The results of several reports are very promising suggesting probiotics can influence the immune system to curtail the allergic responses.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Francisco J. Pérez-Cano ◽  
Àngels Franch ◽  
Cristina Castellote ◽  
Margarida Castell

Diet plays a crucial role in maintaining optimal immune function. Research demonstrates the immunomodulatory properties and mechanisms of particular nutrients; however, these aspects are studied less in early life, when diet may exert an important role in the immune development of the neonate. Besides the limited data from epidemiological and human interventional trials in early life, animal models hold the key to increase the current knowledge about this interaction in this particular period. This paper reports the potential of the suckling rat as a model for immunonutrition studies in early life. In particular, it describes the main changes in the systemic and mucosal immune system development during rat suckling and allows some of these elements to be established as target biomarkers for studying the influence of particular nutrients. Different approaches to evaluate these immune effects, including the manipulation of the maternal diet during gestation and/or lactation or feeding the nutrient directly to the pups, are also described in detail. In summary, this paper provides investigators with useful tools for better designing experimental approaches focused on nutrition in early life for programming and immune development by using the suckling rat as a model.


2003 ◽  
Vol 176 (3) ◽  
pp. 293-304 ◽  
Author(s):  
F Tanriverdi ◽  
LF Silveira ◽  
GS MacColl ◽  
PM Bouloux

GnRH and sex steroids play an important role in immune system modulation and development. GnRH and the GnRH receptor are produced locally by immune cells, suggesting an autocrine role for GnRH. Experimental studies show a stimulatory action of exogenous GnRH on the immune response. The immune actions of GnRH in vivo are, however, less well established. Oestrogen and androgen receptors are expressed in primary lymphoid organs and peripheral immune cells. Experimental data have established that oestrogens enhance the humoral immune response and may have an activating role in autoimmune disorders. Testosterone enhances suppressor T cell activity. Although there are some clinical studies consistent with these findings, the impact of sex steroids in autoimmune disease pathogenesis and the risk or benefits of their usage in normal and autoimmune-disordered patients remain to be elucidated. There are neither experimental nor clinical data evaluating functional GnRH-sex steroid interactions within the human immune system, and there is a paucity of data relating to GnRH analogues, hormone replacement therapy and oral contraceptive and androgen action in autoimmune diseases. However, a growing body of experimental evidence suggests that an extra-pituitary GnRH immune mechanism plays a role in the programming of the immune system. The implications of these findings in understanding immune function are discussed.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3331
Author(s):  
Alex Gordon-Weeks ◽  
Arseniy Yuzhalin

The extracellular matrix (ECM) plays an increasingly recognised role in the development and progression of cancer. Whilst significant progress has been made in targeting aspects of the tumour microenvironment such as tumour immunity and angiogenesis, there are no therapies that address the cancer ECM. Importantly, immune function relies heavily on the structure, physics and composition of the ECM, indicating that cancer ECM and immunity are mechanistically inseparable. In this review we highlight mechanisms by which the ECM shapes tumour immunity, identifying potential therapeutic targets within the ECM. These data indicate that to fully realise the potential of cancer immunotherapy, the cancer ECM requires simultaneous consideration.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Laura Di Renzo ◽  
Paola Gualtieri ◽  
Francesca Pivari ◽  
Laura Soldati ◽  
Alda Attinà ◽  
...  

Abstract On December 12, 2019 a new coronavirus (SARS-CoV-2) emerged in Wuhan, China, triggering a pandemic of severe acute respiratory syndrome in humans (COVID-19). Today, the scientific community is investing all the resources available to find any therapy and prevention strategies to defeat COVID-19. In this context, immunonutrition can play a pivotal role in improving immune responses against viral infections. Immunonutrition has been based on the concept that malnutrition impairs immune function. Therefore, immunonutrition involves feeding enriched with various pharmaconutrients (Omega 3 Fatty Acids, Vitamin C, Arginine, Glutamine, Selenium, Zinc, Vitamin, E and Vitamin D) to modulate inflammatory responses, acquired immune response and to improve patient outcomes. In literature, significant evidences indicate that obesity, a malnutrition state, negatively impacts on immune system functionality and on host defense, impairing protection from infections. Immunonutrients can promote patient recovery by inhibiting inflammatory responses and regulating immune function. Immune system dysfunction is considered to increase the risk of viral infections, such as SARS-CoV-2, and was observed in different pathological situations. Obese patients develop severe COVID-19 sequelae, due to the high concentrations of TNF-α, MCP-1 and IL-6 produced in the meantime by visceral and subcutaneous adipose tissue and by innate immunity. Moreover, leptin, released by adipose tissue, helps to increase inflammatory milieu with a dysregulation of the immune response. Additionally, gut microbiota plays a crucial role in the maturation, development and functions of both innate and adaptive immune system, as well as contributing to develop obese phenotype. The gut microbiota has been shown to affect lung health through a vital crosstalk between gut microbiota and lungs, called the “gut-lung axis”. This axis communicates through a bi-directional pathway in which endotoxins, or microbial metabolites, may affect the lung through the blood and when inflammation occurs in the lung, this in turn can affect the gut microbiota. Therefore, the modulation of gut microbiota in obese COVID-19 patients can play a key role in immunonutrition therapeutic strategy. This umbrella review seeks to answer the question of whether a nutritional approach can be used to enhance the immune system’s response to obesity in obese patients affected by COVID-19.


Nanoscale ◽  
2014 ◽  
Vol 6 (16) ◽  
pp. 9599-9603 ◽  
Author(s):  
Claudia Crescio ◽  
Marco Orecchioni ◽  
Cécilia Ménard-Moyon ◽  
Francesco Sgarrella ◽  
Proto Pippia ◽  
...  

Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition are able to fight spaceflight immune system dysregulations.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 468
Author(s):  
Antonella Di Sotto ◽  
Annabella Vitalone ◽  
Silvia Di Giacomo

Immunomodulators are agents able to affect the immune system, by boosting the immune defences to improve the body reaction against infectious or exogenous injuries, or suppressing the abnormal immune response occurring in immune disorders. Moreover, immunoadjuvants can support immune system acting on nonimmune targets, thus improving the immune response. The modulation of inflammatory pathways and microbiome can also contribute to control the immune function. Some plant-based nutraceuticals have been studied as possible immunomodulating agents due to their multiple and pleiotropic effects. Being usually more tolerable than pharmacological treatments, their adjuvant contribution is approached as a desirable nutraceutical strategy. In the present review, the up to date knowledge about the immunomodulating properties of polysaccharides, fatty acids and labdane diterpenes have been analyzed, in order to give scientific basic and clinical evidence to support their practical use. Since promising evidence in preclinical studies, limited and sometimes confusing results have been highlighted in clinical trials, likely due to low methodological quality and lacking standardization. More investigations of high quality and specificity are required to describe in depth the usefulness of these plant-derived nutraceuticals in the immune system modulation, for health promoting and disease preventing purposes.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 752
Author(s):  
Andrea Mahn ◽  
Antonio Castillo

Brassicaceae are an outstanding source of bioactive compounds such as ascorbic acid, polyphenols, essential minerals, isothiocyanates and their precursors, glucosinolates (GSL). Recently, GSL gained great attention because of the health promoting properties of their hydrolysis products: isothiocyanates. Among them, sulforaphane (SFN) became the most attractive one owing to its remarkable health-promoting properties. SFN may prevent different types of cancer and has the ability to improve hypertensive states, to prevent type 2 diabetes–induced cardiomyopathy, and to protect against gastric ulcer. SFN may also help in schizophrenia treatment, and recently it was proposed that SFN has potential to help those who struggle with obesity. The mechanism underlying the health-promoting effect of SFN relates to its indirect action at cellular level by inducing antioxidant and Phase II detoxifying enzymes through the activation of transcription nuclear factor (erythroid-derived 2)-like (Nrf2). The effect of SFN on immune response is generating scientific interest, because of its bioavailability, which is much higher than other phytochemicals, and its capacity to induce Nrf2 target genes. Clinical trials suggest that sulforaphane produces favorable results in cases where pharmaceutical products fail. This article provides a revision about the relationship between sulforaphane and immune response in different diseases. Special attention is given to clinical trials related with immune system disorders.


2016 ◽  
Vol 45 (5) ◽  
pp. 187
Author(s):  
Ariyanto Harsono

The immune function is designed to defendthe body in a safe and efficient way againsta variety of dangerous materials includingtoxins and infectious organisms. Mechanical andbiological barriers prevent the penetration ofexogenous material into the body. Only after thesebarriers have been breached and cells have beendirectly attacked does the immune system come intoplay. By a variety of mechanisms, certain immunecells can directly phagocytose and destroy manypathogens. They require the close cooperation ofsomatic cells, which both alert the immune systemthrough alarm signals and later participate in theeffector phase. This first alarm signal can be groupedtogether as “stress signals”, known as the innateimmune response.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Matthew Huber ◽  
Brian Huber

Significant progress has been made in our understanding of the molecular lesions responsible for tumor cells to exhibit uncontrolled growth while circumventing normal mechanisms of apoptosis and their ability to migrate and invade normal tissues while evading recognition and destruction by the immune system. This understanding has enabled the development of therapies specifically targeted to these lesions coupled to innovative treatment regimens to most effectively use these new targeted therapies with precision in selected subpopulations of patients. Innovation at the scientific and clinical levels has been appropriately embraced and supported at the FDA, resulting in regulatory innovation to facilitate and adapt to the Precision Medicine environment.


Sign in / Sign up

Export Citation Format

Share Document