scholarly journals Child immune response and the role of nutrition

2016 ◽  
Vol 45 (5) ◽  
pp. 187
Author(s):  
Ariyanto Harsono

The immune function is designed to defendthe body in a safe and efficient way againsta variety of dangerous materials includingtoxins and infectious organisms. Mechanical andbiological barriers prevent the penetration ofexogenous material into the body. Only after thesebarriers have been breached and cells have beendirectly attacked does the immune system come intoplay. By a variety of mechanisms, certain immunecells can directly phagocytose and destroy manypathogens. They require the close cooperation ofsomatic cells, which both alert the immune systemthrough alarm signals and later participate in theeffector phase. This first alarm signal can be groupedtogether as “stress signals”, known as the innateimmune response.

2019 ◽  
Vol 6 (1) ◽  
pp. 58-62
Author(s):  
Gabriel Ferraz Campos Basilio ◽  
Lucília Fraissat Santana ◽  
Matheus Moreira

biológico complexo que pode causar diferentes reações imunes no organismo. Essa resposta imune leva a manifestações leves ou graves da doença. O objetivo deste trabalho é abordar o papel do sistema imune na fisiopatologia da malária e suas complicações. Visando assim, definir  a melhor abordagem a ser seguida pelas novos trabalhos em terapêutica da malária. Palavras-chave: malária; sistema imune; fisiopatologia; complicações. ABSTRACT Malaria is one of the leading global health issues; it causes more than a million deaths each year. In Brazil, malaria cases are mainly concentrated in the north region of the country. The disease is caused by a complex biological cycle parasite which can cause different immune reactions in the body. This immune response leads to mild or severe manifestations of the disease. The objective of this work is to address the role of the immune system in the pathophysiology of malaria and its complications. In this way, we can define the best approach to new research in malaria therapy. Keywords: malaria; immune system; physiopathology; complications.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 753-757
Author(s):  
Anagha Gulhane ◽  
Shamli Hiware

It is the most unreliable truth that anybody can get infected by the COVID-19, and nobody can escape from the danger of getting tainted by the virus. Yet, the line of hope is that anyone and everyone can boost their resistance, thus avoid the risk of getting affected by the illness. The immunity of humans pulls down as they grow older. If their immune system is robust, them falling sick is feeble. If their resistance is weak, them getting ill is sound. Several factors affect the immune system and its ability, including its nourishment. A two-way connection between nutrition, infection and immunity presents. Changes in one part will affect the others part in our body that's the nature's rule. Well defined immune system quality which is present between each life phase may influence the type, generality and the degree of infections. At the same time, low nutrition to the body will decrease the immune function and expose the body to the danger of getting infected by infectious diseases. Different quantity of micronutrients is required for increasing the immunity power of our body. Generally the vitamins A,C,D,E,B2,B6,B12, iron, zinc and selenium.The deficiencies of micronutrients are acknowledged as a global health issue, and also low nutrition makes it prone to establishes the infections in the body.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 716-722
Author(s):  
Sneha Dhakite ◽  
Sadhana Misar Wajpeyi

The “Coronavirus disease 19 (COVID-19)” is caused by “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”, a newly discovered member of the Coronaviridae family of viruses which is a highly communicable. There is no effective medical treatment till date for Coronavirus disease hence prevention is the best way to keep disease away. Rasayana proved to be highly efficacious and cost effective for the Prevention and Control of viral infections when vaccines and standard therapies are lacking. Rasayana Chikitsa is one of the eight branches of Ashtanga Ayurveda which helps to maintain healthy life style. Rasayana improves immunity and performs many vital functions of human body. Vyadhikshamatva that is immune mechanism of the body is involved in Prevention of the occurrence of a new disease and it also decreases the virulence and progression of an existing disease. In COVID-19 the Respiratory system mainly get affected which is evident from its symptoms like cold, cough and breathlessness. Here the drugs help in enhancing immune system and strengthening functions of Respiratory system can be useful. For this purpose, the Rasayana like Chyavanprasha, Agastya Haritaki, Pippali Rasayana, Guduchi, Yashtimadhu, Haridra, Ashwagandha, Tulsi are used. Rasayana working on Respiratory system are best for Prevention of Coronavirus and boosting immune system. Rasayana Chikitsa can be effective in the Prevention as well as reducing symptoms of COVID-19.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 759
Author(s):  
David Mantle ◽  
Robert A. Heaton ◽  
Iain P. Hargreaves

Coenzyme Q10 (CoQ10) has a number of important roles in the cell that are required for optimal functioning of the immune system. These include its essential role as an electron carrier in the mitochondrial respiratory chain, enabling the process of oxidative phosphorylation to occur with the concomitant production of ATP, together with its role as a potential lipid-soluble antioxidant, protecting the cell against free radical-induced oxidation. Furthermore, CoQ10 has also been reported to have an anti-inflammatory role via its ability to repress inflammatory gene expression. Recently, CoQ10 has also been reported to play an important function within the lysosome, an organelle central to the immune response. In view of the differing roles CoQ10 plays in the immune system, together with the reported ability of CoQ10 supplementation to improve the functioning of this system, the aim of this article is to review the current literature available on both the role of CoQ10 in human immune function and the effect of CoQ10 supplementation on this system.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1550
Author(s):  
Diana Martonik ◽  
Anna Parfieniuk-Kowerda ◽  
Magdalena Rogalska ◽  
Robert Flisiak

COVID-19 is an acute infectious disease of the respiratory system caused by infection with the SARS-CoV-2 virus (Severe Acute Respiratory Syndrome Coronavirus 2). Transmission of SARS-CoV-2 infections occurs through droplets and contaminated objects. A rapid and well-coordinated immune system response is the first line of defense in a viral infection. However, a disturbed and over-activated immune response may be counterproductive, causing damage to the body. Severely ill patients hospitalised with COVID-19 exhibit increased levels of many cytokines, including Interleukin (IL)-1β, IL-2, IL-6, IL-7, IL-8, IL-10, IL-17, granulocyte colony stimulating factor (G-CSF), monocyte chemoattractant protein 1 (MCP-1) and tumor necrosis factor (TNF). Increasing evidence suggests that Th17 cells play an important role in the pathogenesis of COVID-19, not only by activating cytokine cascade but also by inducing Th2 responses, inhibiting Th1 differentiation and suppressing Treg cells. This review focuses on a Th17 pathway in the course of the immune response in COVID-19, and explores plausible targets for therapeutic intervention.


Author(s):  
Luis Sánchez-del-Campo ◽  
Román Martí-Díaz ◽  
María F. Montenegro ◽  
Rebeca González-Guerrero ◽  
Trinidad Hernández-Caselles ◽  
...  

Abstract Background The application of immune-based therapies has revolutionized cancer treatment. Yet how the immune system responds to phenotypically heterogeneous populations within tumors is poorly understood. In melanoma, one of the major determinants of phenotypic identity is the lineage survival oncogene MITF that integrates diverse microenvironmental cues to coordinate melanoma survival, senescence bypass, differentiation, proliferation, invasion, metabolism and DNA damage repair. Whether MITF also controls the immune response is unknown. Methods By using several mouse melanoma models, we examine the potential role of MITF to modulate the anti-melanoma immune response. ChIP-seq data analysis, ChIP-qPCR, CRISPR-Cas9 genome editing, and luciferase reporter assays were utilized to identify ADAM10 as a direct MITF target gene. Western blotting, confocal microscopy, flow cytometry, and natural killer (NK) cytotoxicity assays were used to determine the underlying mechanisms by which MITF-driven phenotypic plasticity modulates melanoma NK cell-mediated killing. Results Here we show that MITF regulates expression of ADAM10, a key sheddase that cleaves the MICA/B family of ligands for NK cells. By controlling melanoma recognition by NK-cells MITF thereby controls the melanoma response to the innate immune system. Consequently, while melanoma MITFLow cells can be effectively suppressed by NK-mediated killing, MITF-expressing cells escape NK cell surveillance. Conclusion Our results reveal how modulation of MITF activity can impact the anti-melanoma immune response with implications for the application of anti-melanoma immunotherapies.


2021 ◽  
pp. 1-10
Author(s):  
Bader Alshehri

Breast cancer being the most malignant and lethal disease persistent among women globally. Immunotherapy as a new treatment modality has emerged in understanding the loopholes in the treatment of breast cancer which is mainly attributed to the potential of tumor cells to evade and survive the immune response by developing various strategies. Therefore, improved understanding of the immune evasion by cancer cells and the monoclonal antibodies against PD- and PD-L1 can help us in the diagnosis of this malignancy. Here in this article, I have highlighted that in addition to focusing on other strategies for breast cancer treatment, the involvement of immune system in breast cancer is vital for the understanding of this malignancy. Further, the complete involvement of immune system in the relapse or recurrence of the breast tumor and have also highlighted the role of vaccines, PD-1 and CTLA-4 with the recent advances in the field. Moreover, in addition to the application of immunotherapy as a sole therapy, combinations of immunotherapy with various strategies like targeting it with MEK inhibitors, Vaccines, chemotherapy and PARP inhibitor has shown to have significant benefits is also discussed in this article.


2021 ◽  
Vol 10 (5) ◽  
pp. 1131
Author(s):  
Magdalena Chmielińska ◽  
Marzena Olesińska ◽  
Katarzyna Romanowska-Próchnicka ◽  
Dariusz Szukiewicz

Haptoglobin (Hp) is an acute phase protein which supports the immune response and protects tissues from free radicals. Its concentration correlates with disease activity in spondyloarthropathies (SpAs). The Hp polymorphism determines the functional differences between Hp1 and Hp2 protein products. The role of the Hp polymorphism has been demonstrated in many diseases. In particular, the Hp 2-2 phenotype has been associated with the unfavorable course of some inflammatory and autoimmune disorders. Its potential role in modulating the immune system in SpA is still unknown. This article contains pathophysiological considerations on the potential relationship between Hp, its polymorphism and SpA.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3198 ◽  
Author(s):  
Francesco Pecora ◽  
Federica Persico ◽  
Alberto Argentiero ◽  
Cosimo Neglia ◽  
Susanna Esposito

Viral infections are a leading cause of morbidity and mortality worldwide, and the importance of public health practices including handwashing and vaccinations in reducing their spread is well established. Furthermore, it is well known that proper nutrition can help support optimal immune function, reducing the impact of infections. Several vitamins and trace elements play an important role in supporting the cells of the immune system, thus increasing the resistance to infections. Other nutrients, such as omega-3 fatty acids, help sustain optimal function of the immune system. The main aim of this manuscript is to discuss of the potential role of micronutrients supplementation in supporting immunity, particularly against respiratory virus infections. Literature analysis showed that in vitro and observational studies, and clinical trials, highlight the important role of vitamins A, C, and D, omega-3 fatty acids, and zinc in modulating the immune response. Supplementation with vitamins, omega 3 fatty acids and zinc appears to be a safe and low-cost way to support optimal function of the immune system, with the potential to reduce the risk and consequences of infection, including viral respiratory infections. Supplementation should be in addition to a healthy diet and fall within recommended upper safety limits set by scientific expert bodies. Therefore, implementing an optimal nutrition, with micronutrients and omega-3 fatty acids supplementation, might be a cost-effective, underestimated strategy to help reduce the burden of infectious diseases worldwide, including coronavirus disease 2019 (COVID-19).


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengguo Wu ◽  
Shang Li ◽  
Xiao Zhu

Cancer immunotherapy is a kind of therapy that can control and eliminate tumors by restarting and maintaining the tumor-immune cycle and restoring the body’s normal anti-tumor immune response. Although immunotherapy has great potential, it is currently only applicable to patients with certain types of tumors, such as melanoma, lung cancer, and cancer with high mutation load and microsatellite instability, and even in these types of tumors, immunotherapy is not effective for all patients. In order to enhance the effectiveness of tumor immunotherapy, this article reviews the research progress of tumor microenvironment immunotherapy, and studies the mechanism of stimulating and mobilizing immune system to enhance anti-tumor immunity. In this review, we focused on immunotherapy against tumor microenvironment (TME) and discussed the important research progress. TME is the environment for the survival and development of tumor cells, which is composed of cell components and non-cell components; immunotherapy for TME by stimulating or mobilizing the immune system of the body, enhancing the anti-tumor immunity. The checkpoint inhibitors can effectively block the inhibitory immunoregulation, indirectly strengthen the anti-tumor immune response and improve the effect of immunotherapy. We also found the checkpoint inhibitors have brought great changes to the treatment model of advanced tumors, but the clinical treatment results show great individual differences. Based on the close attention to the future development trend of immunotherapy, this study summarized the latest progress of immunotherapy and pointed out a new direction. To study the mechanism of stimulating and mobilizing the immune system to enhance anti-tumor immunity can provide new opportunities for cancer treatment, expand the clinical application scope and effective population of cancer immunotherapy, and improve the survival rate of cancer patients.


Sign in / Sign up

Export Citation Format

Share Document