scholarly journals mRNA Expression of lipogenic enzymes in mammary tissue and fatty acid profile in milk of dairy cows fed flax hulls and infused with flax oil in the abomasum

2013 ◽  
Vol 111 (6) ◽  
pp. 1011-1020 ◽  
Author(s):  
Marie-France Palin ◽  
Cristiano Côrtes ◽  
Chaouki Benchaar ◽  
Pierre Lacasse ◽  
Hélène V. Petit

In the present study, the effect of flax hulls with or without flax oil bypassing the rumen on the expression of lipogenic genes in the mammary tissue of dairy cows was investigated. A total of eight dairy cows were used in a replicated 4 × 4 Latin square design. There were four periods of 21 d each and four treatments: control diet with no flax hulls (CONT); diet with 9·88 % flax hulls in the DM (HULL); control diet with 500 g flax oil/d infused in the abomasum (COFO); diet with 9·88 % flax hulls in the DM and 500 g flax oil/d infused in the abomasum (HUFO). A higher mRNA abundance of sterol regulatory element binding transcription factor, fatty acid (FA) synthase, lipoprotein lipase (LPL), PPARγ1, stearoyl-CoA desaturase (SCD) and acetyl-coenzyme A carboxylase-α was observed in cows fed HULL than in those fed CONT, and HUFO had the opposite effect. Compared with CONT, COFO and HUFO lowered the mRNA abundance of SCD, which may explain the lower proportions of MUFA in milk fat with flax oil infusion. The mRNA abundance of LPL in mammary tissue and proportions of long-chain FA in milk fat were higher in cows fed COFO than in those fed CONT. The highest proportions of trans FA were observed when cows were fed HULL. The present study demonstrates that flax hulls with or without flax oil infusion in the abomasum can affect the expression of lipogenic genes in the mammary tissue of dairy cows, which may contribute to the improvement of milk FA profile.

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1465
Author(s):  
Jesus A. C. Osorio ◽  
João L. P. Daniel ◽  
Jakeline F. Cabral ◽  
Kleves V. Almeida ◽  
Karoline L. Guimarães ◽  
...  

This study aimed to evaluate the effects of annatto seeds, linseed oil and their combination on DMI, apparent total tract digestibility, antioxidant capacity and milk composition of dairy cows. Four lactating Holstein cows (120 ± 43 days in milk; 15.98 ± 2.02 kg of milk/day, mean ± SD) were allocated in a 4 × 4 Latin square with a 2 × 2 factorial arrangement (with or without annatto seeds at 15 g/kg of dry matter (DM); with or without linseed oil at 30 g/kg of DM) and provided four different diets: control (no annatto seeds or linseed oil); annatto seeds (15 g/kg of DM); linseed oil (30 g/kg of DM); and a combination of both annatto seeds and linseed oil. Annatto seeds reduced DM intake, and milk yield, protein and lactose, but increased content of fat, total solids and short chain fatty acid, with no effect on total antioxidant capacity of milk. Linseed oil supplementation decreased medium chain fatty acid proportion and n-6/n-3 ratio, conversely it increased long chain fatty acids and n-3 fatty acid content of milk, ether extract intake and total-tract digestibility. Thus, linseed oil supplementation in dairy cow diets improved the milk FA profile but decreased milk fat concentration, whereas annatto seeds did not influence antioxidant capacity and depressed feed intake and milk yield.


1999 ◽  
Vol 66 (4) ◽  
pp. 475-487 ◽  
Author(s):  
ZYGMUNT M. KOWALSKI ◽  
PAWEŁ M. PISULEWSKI ◽  
MAURO SPANGHERO

The objective of this study was to determine the effects of supplementing the diets of dairy cows with Ca soaps of rapeseed fatty acids (CSRFA) and rumen-protected (RP) methionine on their milk yield and composition, including milk protein fractions and fatty acids. Twelve Polish Red Lowland cows were used in a complete balanced two period changeover experiment. The four treatment diets were a control consisting of a total mixed ration of grass silage and concentrates, and the total mixed ration supplemented with RP methionine, CSRFA or RP methionine plus CSRFA. Dry matter intake was not affected by diet. Milk yield increased when cows were given the diet with CSRFA, but supplementation of diets with RP methionine did not affect milk yield. Milk protein content, but not milk protein yield, decreased when CSRFA was given. The addition of RP methionine to the control diet and the CSRFA diet produced similar increases in the milk protein content. Supplementation of the diet with CSRFA significantly changed the milk fatty acid profile: the proportions of 10:0, 12:0, 14:0, 15:0 and 16:0 in milk fat decreased, but those of 18:0 and cis-18:1 increased. We conclude that CSRFA can be used in practical dairy diets to increase milk yield and manipulate its fatty acid composition.


2011 ◽  
Vol 78 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Cristiano Côrtes ◽  
Ricardo Kazama ◽  
Daniele da Silva-Kazama ◽  
Chaouki Benchaar ◽  
Lucia M Zeoula ◽  
...  

Flax hull, a co-product obtained from flax processing, is a rich source of n-3 fatty acids (FA) but there is little information on digestion of flax hull based diets and nutritive value of flax hull for dairy production. Flax oil is rich in α-linolenic acid (LNA) and rumen bypass of flax oil contributes to increase n-3 FA proportions in milk. Therefore, the main objective of the experiment was to determine the effects of abomasal infusion of increasing amounts of flax oil on apparent digestibility, dry matter (DM) intake, milk production, milk composition, and milk FA profile with emphasis on the proportion of LNA when cows were supplemented or not with another source of LNA such as flax hull. Six multiparous Holstein cows averaging 650±36 kg body weight and 95±20 d in milk were assigned to a 6×6 Latin square design (21-d experimental periods) with a 2×3 factorial arrangement of treatments. Treatments were: 1) control, neither flax hull nor flax oil (CON), 2) diet containing (DM basis) 15·9% flaxseed hull (FHU); 3) CON with abomasal infusion of 250 g/d flax oil; 4) CON with abomasal infusion of 500 g/d flax oil; 5) FHU with abomasal infusion of 250 g/d flax oil; 6) FHU with abomasal infusion of 500 g/d flax oil. Infusion of flax oil in the abomasum resulted in a more pronounce decrease in DM intake for cows fed the CON diets than for those fed the FHU diets. Abomasal infusion of flax oil had little effect on digestibility and FHU supplementation increased digestibility of DM and crude protein. Milk yield was not changed by abomasal infusion of flax oil where it was decreased with FHU supplementation. Cows fed FHU had higher proportions of 18:0, cis9-18:1, trans dienes, trans monoenes and total trans in milk fat than those fed CON. Proportion of LNA was similar in milk fat of cows infused with 250 and 500 g/d flax oil in the abomasum. Independently of the basal diet, abomasal infusion of flax oil resulted in the lowest n-6:n-3 FA ratio in milk fat, suggesting that the most important factor for modification of milk FA profile was the amount of n-3 FA bypassing the rumen and not the amount of flax hull fed to dairy cows. Moreover, these data suggest that there is no advantage to supply more than 250 g/d of flax oil in the abomasum to increase the proportion of LNA in milk fat.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 430-430
Author(s):  
John Doelman ◽  
Leslie McKnight ◽  
Pieter Winia ◽  
Gera Uittenbogaard ◽  
Michelle Carson ◽  
...  

Abstract Functional nutrients that facilitate gastrointestinal health may serve as an alternative to the use of antimicrobials in animal production systems. Gluconic acid has been used as a prebiotic health promoter in non-ruminant applications. It is poorly absorbed in the small intestine and is fermented to butyrate in the lower gastrointestinal tract. The gut health benefits of butyrate have been demonstrated in both non-ruminant and ruminant models, but effects of post-ruminal gluconic acid supplementation are not well described. The objective of this study was to determine the effects of calcium gluconate embedded in a fat matrix (CGFM; 40% CaGlu) on dry matter intake, blood metabolites, milk production and fecal short chain fatty acid (SCFA) production in early lactation dairy cows (21 ± 2 DIM) fed to 100% of energy and protein requirements. The experiment was a 3 x 3 replicated Latin square with 13 replicates (3 cows/replicate), 3 experimental periods (each 28 d) and 3 dietary treatments of control (0 g/d), 16 g/d and 25 g/d of CGFM. There was no treatment effect on DMI and milk yield. The relationship between dose of CGFM (i.e. 0, 16, 26 g/d) and milk fat and protein yield, energy corrected milk was significantly quadratic (P < 0.05) while feed efficiency tended to be quadratic (P = 0.08). The greatest response was in milk fat yield, which increased 90 g/d over control at 16 g/d of CGFM. No significant changes in blood metabolite concentrations or fecal SCFA concentrations were observed between treatments, although there was a numerical increase in non-esterified fatty acid concentration in response to the 16 g/d CGFM dose (P = 0.16). The response to supplementation of fat-embedded calcium gluconate appears to alter energy partitioning in the lactating dairy cow, as demonstrated with subtle changes in circulating lipid and increased fat yield.


2012 ◽  
Vol 108 (8) ◽  
pp. 1390-1398 ◽  
Author(s):  
Cristiano Côrtes ◽  
Marie-France Palin ◽  
Nathalie Gagnon ◽  
Chaouki Benchaar ◽  
Pierre Lacasse ◽  
...  

The objectives of the study were to investigate the effects of dietary supplementation of flax hulls and/or flax oil on the activity of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX)) in plasma and the mammary gland and the relative mRNA abundance of antioxidant genes in the mammary gland of dairy cows. A total of eight dairy cows were used in a replicated 4 × 4 Latin square design. There were four treatments: control with no flax hulls (CONT), 9·88 % flax hulls in the DM (HULL), control with 500 g flax oil/d infused in the abomasum (COFO), 9·88 % flax hulls in the DM and 500 g flax oil/d infused in the abomasum (HUFO). Plasma GPX activity tended to decrease with flax oil supplementation. Cows fed HULL had higher levels of CAT, GPX1 and SOD1 mRNA in the mammary gland and lower mRNA abundance of GPX3, SOD2 and SOD3 compared with those fed CONT. Abundance of CAT, GPX1, GPX3, SOD2 and SOD3 mRNA was down-regulated in the mammary gland of cows fed HUFO compared to those fed CONT. The mRNA abundance of CAT, GPX1, GPX3 and SOD3 was lower in the mammary gland of cows fed COFO than in the mammary gland of cows fed CONT. The present study demonstrates that flax hulls contribute to increasing the abundance of some antioxidant genes, which can contribute to protecting against oxidative stress damage occurring in the mammary gland and other tissues of dairy cows.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 107
Author(s):  
Einar Vargas-Bello-Pérez ◽  
Carolina Geldsetzer-Mendoza ◽  
Rodrigo A. Ibáñez ◽  
José Ramón Rodríguez ◽  
Christian Alvarado-Gillis ◽  
...  

Brassica crops such as kale and swede can be supplied to cow diets during winter, however little is known about the effects of feeding those forage brassicas to lactating cows on cheese nutritional characteristics of milk and cheese. This study evaluated the effect of including kale or swede in pasture-fed lactating dairy cow diets on chemical composition, fatty acid (FA) profile, and sensory characteristics of Chanco-style cheese. Twelve early-lactation cows were used in a replicated (n = 4) 3 × 3 square Latin square design. The control diet consisted of (DM basis) 10.0 kg of grass silage, 4.0 kg of fresh grass pasture, 1.5 kg soybean meal, 1.0 kg of canola meal, and 4.0 kg of cereal-based concentrate. The other treatments replaced 25% of the diet with swede or kale. Milk yield, milkfat, and milk protein were similar between treatments as were cheese moisture, fat, and protein. Swede and kale increased total saturated cheese FA while thrombogenic index was greater in swede, but color homogeneity and salty flavor were greater while ripe cheese aroma less than for kale. Kale or swede can be used in the diet of pasture-fed lactating dairy cows without negative effects on milk production, milk composition, or cheese composition. However, kale and swede increased total cheese saturated FA.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 919
Author(s):  
Verónica M. Merino ◽  
Lorena Leichtle ◽  
Oscar A. Balocchi ◽  
Francisco Lanuza ◽  
Julián Parga ◽  
...  

The aim was to determine the effect of the herbage allowance (HA) and supplement type (ST) on dry matter intake (DMI), milk production and composition, grazing behavior, rumen function, and blood metabolites of grazing dairy cows in the spring season. Experiment I: 64 Holstein Friesian dairy cows were distributed in a factorial design that tested two levels of daily HA (20 and 30 kg of dry matter (DM) per cow) and two ST (high moisture maize (HMM) and cracked wheat (CW)) distributed in two daily rations (3.5 kg DM/cow/day). Experiment II: four mid-lactation rumen cannulated cows, supplemented with either HMM or CW and managed with the two HAs, were distributed in a Latin square design of 4 × 4, for four 14-d periods to assess ruminal fermentation parameters. HA had no effect on milk production (averaging 23.6 kg/day) or milk fat and protein production (823 g/day and 800 g/day, respectively). Cows supplemented with CW had greater protein concentration (+1.2 g/kg). Herbage DMI averaged 14.17 kg DM/cow.day and total DMI averaged 17.67 kg DM/cow.day and did not differ between treatments. Grazing behavior activities (grazing, rumination, and idling times) and body condition score (BCS) were not affected by HA or ST. Milk and plasma urea concentration increased under the high HA (+0.68 mmol/L and +0.90 mmol/L, respectively). Cows supplemented with HMM had lower milk and plasma urea concentrations (0.72 mmol/L and 0.76 mmol/L less, respectively) and tended (p = 0.054) to have higher plasma β-hydroxybutyrate. Ruminal parameters did not differ between treatments.


2014 ◽  
Vol 82 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Eleni Tsiplakou ◽  
Emmanouil Flemetakis ◽  
Evangelia-Diamanto Kouri ◽  
Kyriaki Sotirakoglou ◽  
George Zervas

Milk fatty acid (FA) synthesis by the mammary gland involves expression of a large number of genes whose nutritional regulation remains poorly defined. In this study, we examined the effect of long-term under- and over-feeding on the expression of genes (acetyl Co A carboxylase, ACC; fatty acid synthetase, FAS; lipoprotein lipase, LPL; stearoyl Co A desaturase, SCD; peroxisome proliferator activated receptor γ2, PPARγ2; sterol regulatory element binding protein-1, SREBP-1c; and hormone sensitive lipase, HSL) related to FA metabolism in sheep mammary tissue (MT). Twenty-four lactating sheep were divided into three homogenous sub-groups and fed the same ration in quantities covering 70% (underfeeding), 100% (control) and 130% (overfeeding) of their energy and crude protein requirements. The results showed a significant reduction of mRNA of ACC, FAS, LPL and SCD in the MT of underfed sheep, and a significant increase on the mRNA of LPL and SREBP-1c in the MT of overfed compared with the control respectively. In conclusion, the negative, compared to positive, energy balance in sheep down-regulates ACC, FAS, LPL, SCD, SREBP-1c and PPARγ2 expression in their MT which indicates that the decrease in nutrient availability may lead to lower rates of lipid synthesis.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3122
Author(s):  
Jalil Ghassemi Nejad ◽  
Bae-Hun Lee ◽  
Ji-Yung Kim ◽  
Kyung-Il Sung ◽  
Hong-Gu Lee

The effects of grazing lactating cows in mountainous areas for 12 and 24 h compared with the confined indoor system were evaluated by examining the overall milk fatty acid and cortisol. Twenty-one dairy cows were allocated to three treatment groups: (1) control (confined management system in a free-stall barn; TMR based), (2) grazing for 12 h (12hG; TMR plus grazing pasture), and (3) grazing for 24 h (24hG; pasture-based feeding system). Dry matter intake was higher in the control and 12hG groups than in the 24hG group. The yields of total milk and the 3.5% fat-corrected milk were the lowest in the 24hG group. Milk fat was the highest in the 24hG group and higher in 12hG compared with the control group. Milk protein and lactose levels were the highest in the 12hG group. The highest somatic cell count was observed in the 24hG group. The saturated fatty acid levels were higher in the control group compared with the 12hG and 24hG groups. There was no difference in overall mono-unsaturated fatty acids between 12hG and 24hG groups. Poly-unsaturated fatty acids were higher in the 12hG group compared with the control and 24hG groups. There was no difference in omega-6 (ω-6) fatty acids among the groups, and omega-3 fatty acids were higher in the 12hG group than in the control group. Milk cortisol was the highest in the 24hG group and higher in the control group compared with the 12hG group. Taken together, grazing for 12 h is advisable for farms that have access to mountainous areas to improve the milk fatty acid profile and decrease the stress levels in high-yielding Holstein lactating cows.


Sign in / Sign up

Export Citation Format

Share Document