Importance of phosphorus and potassium in soil-specific nutrient management for wet-season rice in Cambodia

2019 ◽  
Vol 56 (2) ◽  
pp. 204-217
Author(s):  
Kea Kong ◽  
Sarith Hin ◽  
Vang Seng ◽  
Abdelbagi M. Ismail ◽  
Georgina Vergara ◽  
...  

AbstractRice is widely grown in rainfed lowlands during the wet season in the Mekong region. Limited nutrient availability is a common constraint on crop yield, and the optimal rate of fertilizer application depends on the soil type. The objective of our study was to evaluate rice productivity and the economic feasibility of various nutrient management regimes in Cambodia. We conducted field experiments on three soil types (Prey Khmer, Prateah Lang, and Toul Samroung, equivalent to Psamments, Plinthustalfs, and Endoaqualfs, respectively) in four provinces (Battambang, Kampong Thom, Pursat, and Siem Reap) during the 2016 and 2017 wet seasons to compare nine (2016) and seven (2017) N–P–K combinations. Grain yield ranged from 0.9 to 4.8 t ha−1 in 2016 and from 1.0 to 5.2 t ha−1 in 2017, depending on soil type and nutrient management. The Prey Khmer soil contained around 80% sand, and rice yield responded most weakly to nutrient management. The moderate fertilizer input in the current soil-specific recommendation was effective on this soil type. However, on more fertile soils with a higher clay content and a higher cation-exchange capacity (Toul Samroung and Prateah Lang), an additional 20 kg N ha−1 combined with adding 15 kg ha−1 of P2O5 or 20 kg ha−1 of K2O significantly increased yield and economic return. Although P and K use during Cambodia’s wet season is uncommon, our results demonstrate the importance of these nutrients in improving the country’s rice production.

2000 ◽  
Vol 135 (4) ◽  
pp. 335-346 ◽  
Author(s):  
A. WILCOX ◽  
N. H. PERRY ◽  
N. D. BOATMAN ◽  
K. CHANEY

Yields of arable crops are commonly lower on the crop margins or headlands, but the nature of the relationship between yield and distance from the crop edge has not been clearly defined, nor have the reasons for lower marginal yields. Surveys of 40 winter wheat headlands were carried out in 2 years to determine how yield changed with distance, and what factors might influence this relationship. Two field experiments were also conducted over 3 years in winter cereal headlands, in which the effect of distance was measured under conservation headland and conventional (fully sprayed) management.Yields in the headland surveys varied from 0·8 to 10·2 t/ha. An inverse polynomial regression model was fitted to yield and weed data. Best fits were obtained by using separate parameters for each site. Adjusting yields to take account of weed dry matter improved the non-linear fit between yield and distance from crop edge. Field experiments provided similar results but the non-linear relationship was not as apparent.There was a negative relationship between soil compaction, as measured by a cone penetrometer, and yield in one field experiment, where soil density values were relatively constant. No relationship was found between pattern of nitrogen fertilizer application and yield. Conservation headland management resulted in lower yield at one experimental site, especially in the third year, but not at the other site. Where yields were affected, weed dry matter was higher in conservation headland plots than in fully sprayed plots.Although greater weed competition appears to account for at least part of the observed yield reductions on headlands, the role of other factors, particularly soil compaction, needs further study. Increased weed infestation may be an indirect result of reduced crop competition caused by other adverse conditions.


1991 ◽  
Vol 116 (2) ◽  
pp. 275-279 ◽  
Author(s):  
E. P. Papanicolaou ◽  
C. G. Apostolakis ◽  
V. Skarlou ◽  
C. Nobeli ◽  
P. Kritidis

SUMMARYPlant:soil ratios (CRs) of 85Sr concentration were studied in wheat, lucerne, lettuce, radish, string bean (Phaseolus vulgaris), and cucumber grown in pots in eight Greek soil types in a glasshouse pot experiment in 1989.The CRs of the crops and of the plant parts studied differed according to soil type. They ranged from 0·034–1·39 for wheat grains to 7·6–36·5 for cucumber stems and leaves. The CRs of the edible parts were much lower than those of the other plant material.The correlation between CRs and clay content was negative and, in most cases, significant (P = 0·05–0·01) or highly significant (P < 0·01). The negative correlation improved (higher absolute value of r, lower variability) if clay plus silt content or cation exchange capacity was used instead of clay content.The correlation between CRs and soil properties was greatest for soil pH (r = –0·89) and decreased in the order: pH > total clay plus silt ≃ cation exchange capacity > total clay.


1987 ◽  
Vol 108 (2) ◽  
pp. 321-329 ◽  
Author(s):  
U. C. Sharma ◽  
B. R. Arora

SummarySix field experiments, three each during 1982–3 and 1983–4, were conducted on a sandy loam soil to study the effect of varying levels of nitrogen, phosphorus and potassium, in the absence and presence of farmyard manure (FYM) (30 t/ha), on the number of tubers and yield of potato in three grades. Increase in nitrogen, phosphorus and potassium application, in the absence or presence of FYM, did not significantly affect the total number of tubers/m2 but did affect the number of tubers in different grades. An increase in nitrogen and potassium significantly decreased the number of tubers/m2 in small (< 25 g) and increased in medium (25–75 g) and large (> 75 g) grades at 45, 60, 75 and 90 days after planting. Increase in the application of phosphorus increased the number of tubers/m2 in the small grade and decreased it in the large grade but did not affect the number in the medium grade. Increase in nitrogen and potassium application decreased the tuber yield in the small grade and increased it in the medium and large grades. Applied phosphorus increased the yield in the small and medium grades and decreased it in the large grade. The increase in the yield of tubers with increase in nitrogen and potassium application was found to be caused by an increase in the number of tubers in the medium and large grades at the expense of the small grade; however, with applied phosphorus the increase in yield was due to increase in the weight of individual tubers within the small and medium grades. FYM application decreased the number of tubers in the small grade and increased it in the medium and large grades. The response of potato to nitrogen increased and to phosphorus and potassium decreased with the application of FYM.


SPE Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Zhiqi Zhong ◽  
Lionel Esteban ◽  
Reza Rezaee ◽  
Matthew Josh ◽  
Runhua Feng

Summary Applying the realistic cementation exponent (m) in Archie’s equation is critical for reliable fluid-saturation calculation from well logs in shale formations. In this study, the cementation exponent was determined under different confining pressures using a high-salinity brine to suppress the surface conductivity related to the cation-exchange capacity of clay particles. A total of five Ordovician shale samples from the Canning Basin, Australia, were used for this study. The shale samples are all illite-rich with up to 60% clay content. Resistivity and porosity measurements were performed under a series of confining pressures (from 500 to 8,500 psi). Nuclear magnetic resonance (NMR) was used to obtain porosity and pore-size distribution and to detect the presence of residual oil. The complex impedance of samples was determined at 1 kHz to verify the change in pore-size distribution using the POLARIS model (Revil and Florsch 2010). The variation of shale resistivity and the Archie exponent m at different pressures is caused by the closure of microfractures at 500 psi, the narrowing of mesopores/macropores between 500 and 3,500 psi, and the pore-throat reduction beyond 3,500 psi. This study indicates that unlike typical reservoirs, the Archie exponent m for shale is sensitive to depth of burial because of the soft nature of the shale pore system. An equation is developed to predict m under different pressures after microfracture closure. Our study provides recommended experimental procedures for the calculation of the Archie exponent m for shales, leading to improved accuracy for well-log interpretation within shale formations when using Archie-basedequations.


2016 ◽  
Vol 59 (1) ◽  
pp. 1-5
Author(s):  
Muhammad Arshad Ullah ◽  
Nazir Hussain ◽  
Helge Schmeisky ◽  
Muhammad Rasheed

The present study was conducted to investigate the effects of intercropping grass (Panicummaximum) and legumes (Vicia sativa and cowpeas) alone or coupled with inoculation or fertilizer on soilfertility. The study comprised of two field experiments conducted under rain fed conditions for two years(June, 2005 to September, 2007) at National Agriculture Research Centre, Islamabad, Pakistan. In oneexperiment intercropping (33, 50 and 67%) of grass and legumes alone as well as coupled with seedinoculation were studied while, same set of treatments was combined with fertilizer application at the ratesof 25, 75 and 50 kg/ha (N, P2O5 and K2O) in the second experiment. Total soil N increased by 0.008% dueto symbiotic fixation in addition to plant uptake under best treatment when compared with grass alonewhile, soil organic matter increased by 0.19%. After crop harvest soil N content was determined to behigher in all the treatments of the experiment compared with growing grass alone. Legumes caused rhizobialN fixation that caused an increase in soil N. Similarly, intercropping and inoculation increased this soilcharacteristic that was found to be non-significant in the first crop but later on became significant, especiallywhen intercropping of grass with legumes after seed inoculation was investigated or fertilizer wassupplemented to the crops. Thus, not only grass used the symbiotically fixed N by companion legumesbut also enhanced the soil N content. The effect of fertilizer was not measurable statistically in case of soilorganic matter. This parameter, in general, was not affected significantly when assessed after first cropharvest. Nevertheless, legumes alone or intercropped within grass increased this important soil constituent.Inoculation proved further beneficial in this regard but combination of intercropping (especially 67%)either with seed inoculation or application of fertilizer was found as the best technique for increasing soilorganic matter.


2017 ◽  
Vol 38 (1) ◽  
pp. 143
Author(s):  
Liane Barreto Alves Pinheiro ◽  
Rodrigo Camara ◽  
Marcos Gervasio Pereira ◽  
Eduardo Lima ◽  
Maria Elizabeth Fernandes Correia ◽  
...  

Mound-building termites are important agents of soil bioperturbation, but these species have not been extensively studied thus far. The present study aimed to evaluate the soil particle-size and the chemical attributes of termite mounds and the surrounding soil under different land use strategies. A one-hectare plot was defined for an unmanaged degraded pasture, planted pasture, and for a eucalyptus Corymbia citriodora plantation. In each plot, the top, center, and base sections of five Cornitermes cumulans mounds, and the surrounding soil at the depths of 0-5; 5-10; 10-20 cm, were sampled in the Pinheiral, Rio de Janeiro state. In the three areas, the center of the mounds contained higher clay content, organic carbon, phosphorous, calcium and magnesium, total bases, and cation exchangeable capacity, when compared to the top, base, and the surrounding soils. However, the center had lower values of exchangeable acidity and potassium, of the three areas. In the eucalyptus plantation, the values of pH, total bases, calcium, and magnesium were lower, whereas aluminum, exchangeable acidity, sodium, and cation exchange capacity were higher both in the mounds and in the surrounding soil, in relation to the pastures. There were no differences among the three areas in terms of organic carbon, potassium, phosphorous, and total bases, in the mounds and adjacent soil. Thus, the termite activity altered the clay content and most of the soil chemical properties in all of the studied areas, but only for the center of the mounds. However, the effect of these organisms was different in the eucalyptus plantation in relation to the pasture areas.


Geophysics ◽  
2002 ◽  
Vol 67 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Lee D. Slater ◽  
David Lesmes

The induced polarization (IP) response of rocks and soils is a function of lithology and fluid conductivity. IP measurements are sensitive to the low‐frequency capacitive properties of rocks and soils, which are controlled by diffusion polarization mechanisms operating at the grain‐fluid interface. IP interpretation typically is in terms of the conventional field IP parameters: chargeability, percentage frequency effect, and phase angle. These parameters are dependent upon both surface polarization mechanisms and bulk (volumetric) conduction mechanisms. Consequently, they afford a poor quantification of surface polarization processes of interest to the field geophysicist. A parameter that quantifies the magnitude of surface polarization is the normalized chargeability, defined as the chargeability divided by the resistivity magnitude. This parameter is proportional to the quadrature conductivity measured in the complex resistivity method. For nonmetallic minerals, the quadrature conductivity and normalized chargeability are closely related to lithology (through the specific surface area) and surface chemistry. Laboratory and field experiments were performed to determine the dependence of the standard IP parameters and the normalized chargeability on two important environmental parameters: salinity and clay content. The laboratory experiments illustrate that the chargeability is strongly correlated with the sample resistivity, which depends on salinity, porosity, saturation, and clay content. The normalized chargeability is shown to be independent of the sample resistivity and it is proportional to the quadrature conductivity, which is directly related to the surface polarization processes. Laboratory‐derived relationships between conductivity and salinity, and normalized chargeability and clay content, are extended to the interpretation of 1‐D and 2‐D field‐IP surveys. In the 2‐D survey, the apparent conductivity and normalized chargeability data are used to segment the images into relatively clay‐free and clay‐rich zones. A similar approach can eventually be used to predict relative variations in the subsurface clay content, salinity and, perhaps, contaminant concentrations.


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 23-33 ◽  
Author(s):  
S. Czarnecki ◽  
R.-A. Düring

Abstract. Essential and non-essential metals occur in soils as a result of weathering, industrial processes, fertilization, and atmospheric deposition. Badly adapted cultivation of agricultural soils (declining pH value, application of unsuitable fertilizers) can enhance the mobility of metals and thereby increase their concentrations in agricultural products. As the enrichment of metals in soils occurs over long time periods, monitoring of the long-term impact of fertilization is necessary to assess metal accumulation in agricultural soils. The main objective of this study was to test the effects of different mineral fertilizer variations on soil properties (pH, Corg, and cation exchange capacity (CEC)) and pseudo-total and mobile metal contents of soils after 14 years of fertilizer application and to determine residual effects of the fertilization 8 years after cessation of fertilizer treatment. Soil samples were taken from a field experiment which was carried out at four different locations (210, 260, 360, and 620 m above sea level) in Hesse, Germany. During the study, a significant decrease in soil pH and an evident increase in soil carbon content and cation exchange capacity with fertilization were determined. The CEC of the soils was closely related to their organic C contents. Moreover, pseudo- and mobile metal (Cd, Cu, Mn, Pb, Zn) contents in the soils increased due to application of 14 years of mineral fertilizer treatments (N, P, NP, and NPK) when compared to control plots. Eight years after termination of the fertilization in the soil samples taken from soil profiles of the fertilized plots (NPK) for monitoring the residual effects of the fertilizer application, a decrease of 82.6, 54.2, 48.5, 74.4, and 56.9% in pseudo-total Cd, Cu, Mn, Pb, and Zn contents, respectively, was determined.


Author(s):  
Vítězslav Vlček ◽  
Miroslav Pohanka

Soil samples (n = 11) were collected in the chernozem areas of the Czech Republic (the Central Europe) from the topsoil and used as representative samples. All sampling areas have been used for agricultural purposes (arable soil) and they were selected as typical representatives of agricultural soil. These samples represented the soil with same genesis (to reduction differencies between soil types) but with different soil properties (physical and chemical). Complete chemical and physical analyses were made for confirmation of copper adsorption on solid phase: we analysed the particle size distribution, content of oxidizable carbon (Cox), the cation exchange capacity (CEC), supply of exchange calcium, magnesium, sodium, phosphorus and potassium, soil reaction and the total supply of Fe, Al, Mn, Ca, Mg, K, P and N. The strongest simple correlation between analysed soil properties and copper concentration had content of available magnesium (r = 0.44) and available phosphorus (r = −0.51). In the case of multiple correlations (i. e. collective influence of multiple soil properties) had the strongest influence combination of clay, soil reaction, total content of phosphorus, available magnesium and available phosphorus. The main influence of phosphorus and magnesium is evident. We suppose that copper and phosphorus enter into specific complex. Influence of these five soil properties can explain 92.7 % (r = 0.927) changes in the content of copper changes in the experiment.


2021 ◽  
Vol 34 (4) ◽  
pp. 824-829
Author(s):  
CAMILA SENO NASCIMENTO ◽  
CAROLINA SENO NASCIMENTO ◽  
ARTHUR BERNARDES CECÍLIO FILHO

ABSTRACT Splitting nitrogen (N) fertilizer application can be an efficient nutrient management technique to improve productivity and plant quality, as well as to reduce the negative environmental impact caused by N losses. In this context, the present study investigated how the management of N affects the agronomic characteristics of field-grown arugula plants. Nine treatments were assessed in a randomized complete block design, in a 4 x 2 + 1 factorial scheme, with three replicates. The evaluated factors were doses of N (60, 120, 180 and 240 kg N ha-1), split N fertilizer applications at side-dress (two and three times) and an additional treatment without a N supply. Maximum height was obtained with the application of 198 kg N ha-1. Nitrate content, fresh mass and productivity increased with increasing N doses. There was no effect of split N fertilizer applications on the characteristics evaluated. Therefore, the supply of 240 kg N ha-1 divided into two portions was considered as the best management strategy.


Sign in / Sign up

Export Citation Format

Share Document