Using highly saline irrigation water for a fodder barley crop

1981 ◽  
Vol 96 (3) ◽  
pp. 515-520 ◽  
Author(s):  
Z. Hussain

SUMMARYThe aim of this investigation was to grow barley as a fodder crop under highly saline conditions. Saline irrigation waters with an electrical conductivity (EC) of 2·5, 4·0, 6·0 and 8·0 mmhos/cm respectively were used to irrigate test crops of barley over two growing seasons.It was concluded that in general more highly saline water leads to a considerable increase in soil salinity even over a short period of growth, and a close control of soil salinity through leaching is required. Saline water with an EC of 4·0 mmhos/cm may be utilized without excessively high yield reductions if the soil salinity is well maintained. The saline waters with an EC of 6·0 mmhos/cm and 8·0 mmhos/cm may lead to yield reduction, and they require careful managmeent to control soil salinity build-up.

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1112
Author(s):  
Mohamed E. A. El-sayed ◽  
Mohamed Hazman ◽  
Ayman Gamal Abd El-Rady ◽  
Lal Almas ◽  
Mike McFarland ◽  
...  

The goal of this study is to assess the use of saline groundwater in combination with soil amendments to increase the efficiency of wheat production in new agricultural soil in Egypt. The experiment was conducted during the two consecutive growing seasons, 2019/2020 and 2020/2021, at the Shandaweel Agricultural Research Station, Sohag, Egypt. In this study, plants of Shandaweel 1 spring bread wheat cultivar were grown under the combinations of the two water treatments, i.e., freshwater (307.2 ppm) and saline water (3000 ppm (NaCl + MgCl2)) representing groundwater in Egypt delivered by drip irrigation and the two biochar rates, i.e., zero and 4.8 ton/ha as a soil amendment. The cob corn biochar (CCB) was synthesized by using the slow pyrolysis process (one hour at 350 °C). The results revealed that saline water reduced the grain yield ratio by 8.5%, 11.0%, and 9.7% compared to non-saline water during seasons 2019/2020 and 2020/2021 and over seasons, respectively. Concerning, combined over seasons, the biochar addition enhanced the grain yield by 5.6% and 13.8% compared to non-biochar addition under fresh and saline irrigation water conditions, respectively. Thus, the results indicated and led to a preliminary recommendation that saline groundwater is a viable source of irrigation water and that biochar seemed to alleviate salinity stress on wheat production and in reclaimed soils of Egypt.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 838B-838
Author(s):  
J.P. Mitchell ◽  
D.M. May ◽  
C. Shennan

Field studies were conducted in 1992 and 1993 to assess the effects of irrigation with saline drainage water on processing-tomato fruit yields and quality constituents. Saline water (ECiw = 7 dS/m) was used for 66% of the seasonal irrigation requirements in 1992 and 82% in 1993. Yields of tomatoes irrigated with saline water were maintained relative to nonsaline irrigation in 1992, but were decreased by 33% in 1993. Juice Brix and Bostwick consistency were generally improved by irrigation with saline water. pH was unaffected by irrigation treatment, and titratable acidity, an estimate of citric acid content, was increased only in 1993. Calculated quantities for various marketable processed product yields reflect the dominant influence of fresh fruit yield that masked, to a large extent, whatever quality enhancements that may have derived from saline irrigation. The substantial tomato yield reduction that occurred in the second year of this study in plots irrigated with saline drainage water, the gradual surface accumulation of boron, as well as the significant salt buildup in lower portions of the crop root zone following drainage water irrigations demonstrate definitive limitations to the reuse approach and restrict options for the crops that can be grown in this system and the frequency of saline drainage reuse.


2021 ◽  
Author(s):  
Francisco Pedrero Salcedo ◽  
Juan José Alarcón Cabañero ◽  
Pedro Pérez Cutillas

<p>A pioneering study in Murcia within the framework of the ASSIST (Use of Advanced information technologies for Site-Specific management of Irrigation and SaliniTy with degraded water) research project, seeks to lay the foundations for a new integrated system for the assessment of salinity through combined use of traditional techniques (soil and plant sampling) and new technologies (multispectral aerial videography or satellite observation; and image analysis) to help quantify and map soil salinization / degradation and the effects of soil-plant interactions (salinity-toxicity) on the growth and yield of irrigated crops. In this sense, the initial objective was to evaluate the salinity of the soil and the development of lettuces irrigated with unconventional water resources through thermal and multispectral images. Different soil and plant salinity indices were studied, observing that the temperature (on plant) and salinity index (SI) (on soil), had a moderate correlation with the soil salinity. Although the results obtained have been encouraging, more research is needed to develop specific equations capable to predic soil salinity from the values of these indices taken remotely. In this context, a review of the spectral salinity indices has been prepared to be applied at a regional scale. As an experimental area, El Campo de Cartagena located in the southeast of the Iberian Peninsula has been chosen, since there is intensive irrigated agriculture in a semi-arid environment. Due to this, farmers resort to using non-conventional and saline water sources, consequently the use of saline irrigation water is causing salinization of the soils and damage to the crops. Values from existing salinity records combined with soil salinity data obtained in various plots, provided information that was correlated with time series of Landsat images (1984-2020). Regression models were also applied in which environmental variables provided an improvement in the estimation of soil salinity. The results allowed us to determine the main salinity concentration areas, as well as inputs to establish criteria for improvement in the management of irrigation systems.</p>


Author(s):  
Gurpreet Kaur ◽  
S.K. Sanwal ◽  
Nirmala Sehrawat ◽  
Ashwani Kumar ◽  
Naresh Kumar ◽  
...  

Background: Legumes are under explored crops in comparison to staple cereal crops and decreasing agricultural lands along with waste lands and poor water resources are the main constraints for sustainable agricultural production. Chickpea is the third most important food legume, known for its high nutritive values, generally considered as relatively salt sensitive crop. Existence of large genetic variation provides opportunity to explore variations and exploit the available salinity tolerance in chickpea. Methods: A Randomised block design experiment was conducted to explore the salinity tolerance in 10 chickpea genotypes including CSG-8962 (Karnal Chana-1), as salt tolerant check during 2018-19 and 2019-20 under control and salinity ECiw 6 dS/m and ECiw 9 dS/m. The leachate was collected from time to time to monitor the buildup of the desired salinity. At harvesting stage, yield and yield attributing traits were recorded and yield indices were calculated to identify the potential of chickpea genotypes against salinity stress.Result: Saline irrigation water significantly decreased the number of pods/plant by 21.29% under ECiw 6 dS/m and 53.29% under ECiw 9 dS/m. Genotypes ICCV 10, CSG 8962 and DCP 92-3 retained maximum number of filled pods at ECiw 6 dS/m, while under higher salinity of ECiw 9 dS/m, CSG 8962, ICCV 10 and KWR108 had the highest filled pods. Saline water of 6 dS/m caused reduction of 36.1% - 65.0% in grain yield, which further increased to 81.0% - 98.5% with saline water of 9 dS/m. Genotypes S7 and ICCV - 10 had percent grain yield reduction of 36.13% and 41.24% respectively whereas the salt tolerant check had a percent reduction of 46.94% at ECiw 6 dS/m. Based on studied yield indices, genotypes S7, KWR108 and CSG 8962 showed relatively higher tolerance than other studied genotypes, whereas BG 256 and ICC 4463 were the most salt sensitive chickpea genotypes.


HortScience ◽  
2011 ◽  
Vol 46 (4) ◽  
pp. 632-642 ◽  
Author(s):  
Luis A. Valdez-Aguilar ◽  
Catherine M. Grieve ◽  
Abdul Razak-Mahar ◽  
Milton E. McGiffen ◽  
Donald J. Merhaut

Landscape irrigation is the second largest user of reclaimed water in industrialized countries; however, its high concentration of soluble salts, especially Na+ and Cl–, may induce growth reduction and leaf necrosis or bronzing in ornamental species. The present study was conducted to determine the growth and quality responses and nutritional ion imbalances of selected landscape species during the container production phase when subjected to irrigation with water of increasing NaCl + CaCl2 concentrations. Plants of boxwood [Buxus microphylla var. japonica (Mull. Arg. ex Miq) Rehder & E.H. Wilson], escallonia (Escallonia ×exoniensis hort. Veich ex Bean), hawthorn [Raphiolepis indica (L.) Lind. Ex Ker Gawl. × ‘Montic’], hibiscus (Hibiscus rosa-sinensis L.), and juniper (Juniperus chinensis L.) were grown in a greenhouse in the Spring–Summer and in the Fall–Winter in separate experiments. Saline irrigation consisted of solutions with electrical conductivities (ECiw) of 0.6, 2, 4, 6, and 8 dS·m−1 in the Spring–Summer experiment and 0.6, 4, 6, 8, and 12 dS·m−1 in the Fall–Winter. Growth of the five species decreased when irrigated with saline waters. Leaf growth was highly sensitive to salinity and the average decrease in leaf dry weight was the criterion used to rank the tolerance of the species. In the Spring–Summer experiment, the ranking was (higher tolerance to lower tolerance): juniper ∼ boxwood > escallonia > hawthorn > hibiscus, whereas in Fall–Winter, the ranking was: juniper ∼ boxwood > hibiscus > escallonia > hawthorn. The species were ranked according to their visual attractiveness in the Spring–Summer experiment. The threshold ECiw at which visual attractiveness was affected gave the following ranking (higher to lower tolerance): hibiscus > juniper > escallonia > hawthorn > boxwood. Estimating the EC of drainage water from threshold ECiw, boxwood was classified as sensitive, hawthorn as moderately sensitive, escallonia as moderately tolerant, and hibiscus and juniper as highly tolerant. Tolerance of juniper was ascribed to Na+ and Cl– retention in the roots observed in both growing seasons and to the higher root biomass that allowed a higher accumulation of salts in this organ, preventing translocation to the leaves. Although boxwood exhibited acceptable tolerance in terms of growth, visual quality severely decreased; in contrast, growth of hibiscus was the most severely reduced but was rated as the most tolerant species in terms of visual quality. This opposite response may be the result of an excellent capacity to compartmentalize salts in hibiscus, whereas in boxwood, this mechanism may be absent.


1993 ◽  
Vol 44 (4) ◽  
pp. 799 ◽  
Author(s):  
AM Boland ◽  
PD Mitchell ◽  
PH Jerie

TThe effect of four levels of saline irrigation (ECi of 0.1 dS m-l, 0.25 dS m-l, 0.5 dS m-l and 1-0 dS m-l) in conjunction with restricted irrigation volumes was studied in drainage lysimeters over 2 years on peach trees (Prunus persica, L. Batsch), 3-years-old in Year 1. Strong negative linear responses to saline irrigation were measured for growth and final fruit size in Year 2. Leaf chloride increased over time and with treatment levels, reaching a maximum of 3.0% for the 1.0 dS m-l treatment at harvest in Year 2. Root weighted soil Na and Cl levels increased with increasing irrigation salinity. Both Na and C1 levels in fruit and wood were increased by saline irrigation. Photosynthesis was reduced at the high ECi level consistent with decreased conductance and likely C1 toxicity. Saline irrigation reduced tree water use (TWU). Leaf chloride was determined to be a good indicator of salinity level and expected yield reduction. The need for leaching and modification of current Regulated Deficit Irrigation (RDI) management is proposed.


2020 ◽  
pp. 72-74
Author(s):  
Issam Daghari ◽  
Mohamed Ramadhane El Zarroug ◽  
Charles Muanda ◽  
Shanak Naima

In Tunisia, only 30% of mobilized water resources have salinity less than 2.34 dS/m. The objective of this work was to determine the best irrigation scheduling way when saline and desalinated waters are used. Different irrigation doses of freshwater and saline water are used: T80-20, T50-50 and T1d-1d. 80, 20 and 50 correspond to the percentages of irrigation water supplied in a day. For 1d-1d, this corresponds to irrigation one day with saline water and then the next day with desalinated water. Their effect on crops growth and on soil salinity was measured for three different saline waters (1.56, 4.68 and 7.81 dS/m). For irrigation with water salinity of 1.56 dS/m, the treatments T50-50 gives the better yield. For the 4.68 and 7.81 dS/m, a reduction in height was observed for all treatments. Also, for soil salinity at the end of the lettuce crop cycle, T50-50 is the best treatment that has given the best results at all levels.


Author(s):  
Sabah Morsy ◽  
Ibrahim S. Elbasyoni ◽  
Stephen Baenziger

Saline irrigation is one of the approaches that was developed to address the freshwater gap in many regions around the world. This experiment was conducted in two growing seasons under open field conditions in pots. In addition to the control (0.5 dSm-1), three levels of saline water, i.e., 5.0, 7.0, and 9 dSm-1 were used to irrigate ten commercially grown Egyptian wheat cultivars. The number of days to flowering, plant height, fertile tillers, grain weight per spike, number of kernels per spike, and grain yield were measured. Furthermore, Na+, K+, Ca+2, Mg+2, and Cl− were also measured. The objectives of the current study were to (a) estimate the quantitative impact of various levels of saline irrigation water on physio-agronomical performance of commercially grown wheat cultivars; (b) highlight the importance of using salinity stress tolerant wheat cultivars in a scenario where they grow beside salinity stress-sensitive ones and are irrigated with multiple levels of saline water. Salinity stress tolerant wheat cultivars tend to maintain higher levels of K+, Ca+2, and Mg+2, compared to the sensitive ones. Overall, the average performance of the salinity stress-tolerant cultivars across the levels of saline water used was 26.5% higher than the sensitive ones for grain yield. Our results also indicated that 6.25 dSm-1 is the maximum saline water that can be used to irrigate the sensitive wheat cultivars. In which 6.25 dSm-1  is the salinity level that maximizes grain yield, the number of fertile tillers, and K+  concentration while minimizing  Na+ accumulation in plants. For the same reasons, nine dSm-1 was defined as the salinity threshold for the salinity stress-tolerant cultivars.


2021 ◽  
Vol 13 (15) ◽  
pp. 8247
Author(s):  
Dimitrios N. Vlachostergios ◽  
Christos Noulas ◽  
Anastasia Kargiotidou ◽  
Dimitrios Baxevanos ◽  
Evangelia Tigka ◽  
...  

Lentil is a versatile and profitable pulse crop with high nutritional food and feed values. The objectives of the study were to determine suitable locations for high yield and quality in terms of production and/or breeding, and to identify promising genotypes. For this reason, five lentil genotypes were evaluated in a multi-location network consisting of ten diverse sites for two consecutive growing seasons, for seed yield (SY), other agronomic traits, crude protein (CP), cooking time (CT) and crude protein yield (CPY). A significant diversification and specialization of the locations was identified with regards to SY, CP, CT and CPY. Different locations showed optimal values for each trait. Locations E4 and E3, followed by E10, were “ideal” for SY; locations E1, E3 and E7 were ideal for high CP; and the “ideal” locations for CT were E3 and E5, followed by E2. Therefore, the scope of the cultivation determined the optimum locations for lentil cultivation. The GGE-biplot analysis revealed different discriminating abilities and representativeness among the locations for the identification of the most productive and stable genotypes. Location E3 (Orestiada, Region of Thrace) was recognized as being optimal for lentil breeding, as it was the “ideal” or close to “ideal” for the selection of superior genotypes for SY, CP, CT and CPY. Adaptable genotypes (cv. Dimitra, Samos) showed a high SY along with excellent values for CP, CT and CPY, and are suggested either for cultivation in many regions or to be exploited in breeding programs.


2005 ◽  
Vol 62 (4) ◽  
pp. 357-365 ◽  
Author(s):  
Giovani Benin ◽  
Fernando Irajá Félix de Carvalho ◽  
Antônio Costa de Oliveira ◽  
Claudir Lorencetti ◽  
Igor Pires Valério ◽  
...  

Several studies have searched for higher efficiency on plant selection in generations bearing high frequency of heterozygotes. This work aims to compare the response of direct selection for grain yield, indirect selection through average grain weight and combined selection for higher yield potential and average grain weight of oat plants (Avena sativa L.), using the honeycomb breeding method. These strategies were applied in the growing seasons of 2001 and 2002 in F3 and F4 populations, respectively, in the crosses UPF 18 CTC 5, OR 2 <FONT FACE=Symbol>´</FONT> UPF 7 and OR 2 <FONT FACE=Symbol>´</FONT> UPF 18. The ten best genetic combinations obtained for each cross and selection strategy were evaluated in greenhouse yield trials. Selection of plants with higher yield and average grain weight might be performed on early generations with high levels of heterozygosis. The direct selection for grain yield and indirect selection for average grain weight enabled to increase the average of characters under selection. However, genotypes obtained through direct selection presented lower average grain weight and those obtained through the indirect selection presented lower yield potential. Selection strategies must be run simultaneously to combine in only one genotype high yield potential and large grain weight, enabling maximum genetic gain for both characters.


Sign in / Sign up

Export Citation Format

Share Document