Intercropping with pulses to concentrate nitrogen and sulphur in wheat

2007 ◽  
Vol 145 (5) ◽  
pp. 469-479 ◽  
Author(s):  
M. J. GOODING ◽  
E. KASYANOVA ◽  
R. RUSKE ◽  
H. HAUGGAARD-NIELSEN ◽  
E. S. JENSEN ◽  
...  

SUMMARYThe effects of intercropping wheat with faba bean (Denmark, Germany, Italy and UK) and wheat with pea (France), in additive and replacement designs on grain nitrogen and sulphur concentrations were studied in field experiments in the 2002/03, 2003/04 and 2004/05 growing seasons. Intercropping wheat with grain legumes regularly increased the nitrogen concentration of the cereal grain, irrespective of design or location. Sulphur concentration of the cereal was also increased by intercropping, but less regularly and to a lesser extent compared with effects on nitrogen concentration. Nitrogen concentration (g/kg) in wheat additively intercropped with faba bean was increased by 8% across all sites (weighted for inverse of variance), but sulphur concentration was only increased by 4%, so N:S ratio was also increased by 4%. Intercropping wheat with grain legumes increased sodium dodecyl sulphate (SDS)-sedimentation volume. The effect of intercropping on wheat nitrogen concentration was greatest when intercropping had the most deleterious effect on wheat yield and the least deleterious effect on pulse yield. Over all sites and seasons, and irrespective of whether the design was additive or replacement, increases in crude protein concentration in the wheat of 10 g/kg by intercropping with faba bean were associated with 25–30% yield reduction of the wheat, compared with sole-cropped wheat. It was concluded that the increase in protein concentration of wheat grain in intercrops could be of economic benefit when selling wheat for breadmaking, but only if the bean crop was also marketed effectively.

1986 ◽  
Vol 26 (3) ◽  
pp. 339 ◽  
Author(s):  
J Harbison ◽  
BD Hall ◽  
RGH Nielsen ◽  
WM Strong

Performances of 18 winter cereal, grain legume and oilseed crops were compared on the Darling Downs in 1976 using cultural practices appropriate for each. All crops, except for faba bean, which had a lower population than desired, established satisfactorily. The season was characterised by twice the average number (55) of heavy frosts, although only safflower appeared to be adversely affected. Heavy rain around maturity caused lodging of the prostrate crops lathyrus and field pea, some pod shattering of most grain legumes, and delays in machine-harvest, due to waterlogging, of almost all crops. Barley and canary seed were affected by powdery mildew during August and early September but recovered after rain in mid-September. Later rainfall promoted the diseases Alternaria carthami in safflower and Puccinia sp. in vetch, reducing grain yields in both crops. Except for chickpea, all grain legumes nodulated effectively. Lathyrus produced more larger ( >3 mm diameter) nodules than any other grain legume while lentil and vetch had many small (<2 mm) nodules. At floral initiation, more herbage DM was produced by triticale and oats than all other crops except barley and fieldpea. The most productive grain legumes were fieldpea, lathyrus and lentil. All oilseeds produced similar quantities of herbage DM, which were greater than those for grain legumes but less than those for cereals. Nitrogen concentration in herbage increased in the order: cereals < oilseeds <grain legumes. Machine-harvested grain yields of cereals were generally higher than those of oilseeds or grain legumes but delayed harvest caused large grain losses for many oilseeds and grain legumes. Pod shattering and crop lodging caused large yield losses in rapeseed and field peas, respectively. Lupins (cv. Ultra) produced more harvestable grain (1.6 t/ha) than any other grain legume, rapeseed, safflower or canary seed. An even higher grain yield (3.9 t/ha) was measured at a nearby site on an acid soil. Of the other grain legumes, lentil and lathyrus appear to be poorly adapted for this region while faba bean and vetch appear moderately well suited.


2012 ◽  
Vol 26 (2) ◽  
pp. 284-288 ◽  
Author(s):  
Samuel G. L. Kleemann ◽  
Gurjeet S. Gill

Two field experiments were undertaken at Roseworthy, South Australia from 2006 to 2007 to evaluate the performance of herbicide application strategies for the control of herbicide-resistant rigid ryegrass in faba bean grown in wide rows (WR). The standard farmer practice of applying postsowing PRE (PSPE) simazine followed by POST clethodim to faba bean grown in WR provided consistent and high levels of rigid ryegrass control (≥ 96%) and caused a large reduction (P < 0.05) in spike production (≤ 20 spikes m−2) as compared with nontreated control (560 to 722 spikes m−2). Furthermore, this herbicide combination resulted in greatest yield benefits for WR faba bean (723 to 1,046 kg ha−1). Although PSPE propyzamide used in combination with shielded interrow applications of glyphosate or paraquat provided high levels of rigid ryegrass control (≥ 93%), these treatments were unable to reduce ryegrass spike density within the crop row (20 to 54 spikes m−2) to levels acceptable for continued cropping. Furthermore, a yield reduction (13 to 29%) was observed for faba bean in treatments with shielded application of nonselective herbicides and could be related to spray drift onto lower leaves. These findings highlight that shielded interrow spraying in WR faba bean could play an important role in the management of rigid ryegrass in southern Australia. However, timing of shielded interrow applications on weed control, crop safety, and issues concerning integration with more effective early-season control strategies require attention.


1989 ◽  
Vol 69 (3) ◽  
pp. 473-479 ◽  
Author(s):  
UMESH C. GUPTA

Field experiments were conducted in Prince Edward Island (P.E.I.) to determine the effects of Zn (zinc sulfate) applied to the soil; applied as a foliar spray; and the effects of chelated Zn applied as a foliar spray on Zn concentration of alfalfa (Medicago sativa L.), ryegrass (Lolium multiflorum Lam.), wheat (Triticum aestivum L.), and barley (Hordeum vulgare L.). Plant tissue Zn levels as low as 12 mg kg−1 in forages, 14 mg kg−1 in cereal boot stage tissue and 19 mg kg−1 in cereal grain were not related to Zn deficiency. Tissue Zn levels as high as 123 mg kg−1 in barley boot stage tissue and 153 mg kg−1 in alfalfa did not result in yield reduction or any Zn toxicity symptoms. Cereal and forage yields were not affected by Zn treatments. In most cases, soil and foliar Zn applications were effective in increasing the Zn concentration in forages and cereals. Should a Zn deficiency be suspected (either from the crop or animal nutrition viewpoint) Zn could be applied to the soil at 20 kg ha−1 or as a foliar spray at 0.5 to 1.0 kg ha−1 to overcome the problem in this region (and in other areas with similar soil and climatic conditions). Key words: Plant Zn, soil and foliar applied Zn, Zn chelate and zinc sulfate, podzol soils


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1244
Author(s):  
Malik Adil Nawaz ◽  
Tanoj Kumar Singh ◽  
Regine Stockmann ◽  
Hema Jegasothy ◽  
Roman Buckow

The objective of this research was to develop a model faba bean drink with a high concentration of protein (>4% w/w). The protein molecular weights and frequency for both faba and soy were assessed using SDS-PAGE. Results showed similarities in the protein molecular weight of both faba and soy (mainly 11S globulin ~Glycinin and 7S globulin ~β-conglycinin). Thus, faba can be considered as a potential soy replica in plant-based milk beverages. Oil-in-water emulsions (5–8% w/w available protein) were prepared using faba bean protein concentrate (FPC), 1% sunflower oil, and 0.2% sunflower lecithin. These emulsions were used as model beverages and were further investigated for UHT processibility, stability, and physicochemical properties. The physicochemical properties of emulsions at various processing stages viz., coarse emulsification, homogenisation, and UHT, were measured. An increase in the protein concentration and thermal treatment resulted in an increased oil droplet size, coalescence and flocculation, and protein aggregation. Lower protein concentrations viz., 5–6%, showed greater negative ζ-potential, and thereby, high dispersibility through enhanced electrostatic repulsions than those of higher concentrations (7–8%). Furthermore, an increase in protein concentration and UHT treatment resulted in an increased creaming index. In total, 21 different volatile compounds were detected and quantified, representing different chemical classes, namely alcohols, aldehydes, ketones, esters, furan, and acids. These volatiles have major consequences for the overall flavour chemistry of the model beverage product. Overall, this study showed the potential for application of faba bean as a protein source in UHT-treated legume-based beverages and identified areas for further development.


1997 ◽  
Vol 1997 ◽  
pp. 132-132
Author(s):  
A.P. Moloney ◽  
P. O'Kiely

The yield of dry matter (DM) in a mature wheat crop can equal that obtained from three cuts of grass. Ensiled mature whole crop wheat is however characterised by a lower digestibility and lower crude protein concentration than good quality grass silage. Addition of urea at ensiling has been shown to increase the digestibility and the non-protein nitrogen concentration of whole crop wheat silage. The objectives of this study were to determine (i) the effect of urea-treatment on the in vivo digestibility of wheat of relatively high moisture concentration and (ii) the effects of the provision of a rapidly fermentable carbohydrate supplement on nitrogen metabolism in steers fed these silages.


2017 ◽  
Vol 3 ◽  
Author(s):  
A. R. Escalona-Montaño ◽  
R. Pérez-Montfort ◽  
N. Cabrera ◽  
R. Mondragón-Flores ◽  
D. E. Vélez-Ramírez ◽  
...  

AbstractThe main goal of this work consisted in cloning, purifying and characterizing a protein phosphatase 2C (PP2C) from promastigotes ofLeishmania major. The gene was cloned and amplified by PCR using specific oligonucleotides and the recombinant protein was purified by affinity chromatography. The peak with maximal protein concentration was analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and revealed a protein of 44·9 kDa with PP2C activity. This activity was dependent on divalent cations (Mg+2and Mn+2) and was optimal at pH of 8·5, using phosphothreonine as the substrate. Sanguinarine inhibited the activity of the recombinantLmPP2C, while protein tyrosine phosphatase inhibitors had no effect. The recombinantLmPP2C was used to generate polyclonal antibodies. These antibodies recognized a protein of 44·9 kDa in differentLeishmaniaspecies; theLmPP2C was localized in the flagellar pocket and the flagellum of promastigotes.


1995 ◽  
Vol 43 (1) ◽  
pp. 1-5 ◽  
Author(s):  
H.J. Siefkes-Boer ◽  
M.J. Noonan ◽  
D.W. Bullock ◽  
A.J. Conner

Hairy roots were produced on faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.) plants by inoculation with Agrobacterium root-inducing strains. Examination of 14 plant genotypes and eight Agrobacterium strains in all possible combinations revealed specific strain/genotype interactions. Hairy root size and morphology differed substantially between faba bean and chickpea hairy roots. Sixty percent of chickpea hairy roots were 10–15 mm in length and forty percent, 15–25 mm. All were <1.0 mm in thickness. Sixty-three percent of faba bean hairy roots were 15–25 mm long and thirty-seven percent, 25–40 mm. All faba bean hairy roots were between 1.0 and 1.5 mm in thickness.


2012 ◽  
Vol 4 (11) ◽  
Author(s):  
Ali Hafeez Malik ◽  
Allan Andersson ◽  
Ramune Kuktaite ◽  
Muhammad Yaqub Mujahid ◽  
Bismillah Khan ◽  
...  

1990 ◽  
Vol 62 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Juha Helenius

Effects of mixed intercropping on plant size, content of mineral nutrients and biomass yields were examined in three field experiments in Southern Finland in 1983—1985. The stand types were monocrops and replacement series of mixtures with 2/3 and 1/3 or 1/3 and 2/3 of oats (Avena sativa) and faba bean (Vicia faba), respectively. In one of the experiments control of R. padi, by means of deltamethrin sprayings, was an additional experimental factor having two levels. The height of stems or the above ground biomass of oats either were not affected or were increased by crop diversification. Bean plants remained smaller in the mixtures than in the monocrop. In plant size, there was a significant interaction between stand type and the effect of aphicide spraying: Oat benefitted most from being grown in the mixture containing most bean, and there was an indication (not statistically significant) that in these mixtures bean had proportionately higher weight loss. This result was interpreted as giving some support to the hypothesis of interspecific compensation between oats and bean against aphid damage to oats. In oats, the content of N, P, K, Ca, and Mg all decreased from the stage of inflorescence emergence to the stage of the onset of milk development. Mixed cropping increased the content in oats of all these nutrients except Ca. At the same time, contents of P and K in bean were decreased. The changes in growth form and composition in oats induced by intercropping are discussed from the point of view of host plant relationship and damage function of the aphid pest. In terms of relative yield total (RYT), there was no overyielding in the dry matter, and in one case only was there overyielding in the nitrogen. During the period of population growth of R. padi, the daily maximum temperatures within the canopy were higher in the mixtures than in the monocrop of oats.


2021 ◽  
Vol 15 (1) ◽  
pp. 27-36
Author(s):  
V. V. Mykhaliuk ◽  
◽  
V. V. Havryliak ◽  

Background. Keratins are natural biopolymers with a wide range of applications in the field of biotechnology. Materials and Methods. Extraction of keratins was performed by a modified Nakamura method using 250 mM DTT. The protein concentration in the supernatant was determined by Bradford method. The protein composition was studied by their electro­phoretic separation in a polyacrylamide gel in the presence of sodium dodecyl sulfate. The films were made by casting. The surface characteristics of the films were determined using a scanning electron microscope REMMA-102. The elemental composition of the films was determined using an X-ray microanalyzer. Results. The protein concentration in the supernatant was 3.75 mg/mL. After using dithiothreitol in the extraction mixture, we obtained proteins of intermediate filaments with a molecular weight of 40–60 kDa and a low Sulfur content. In the low molecular weight region, we obtained keratin-associated proteins with a molecular weight of 10–30 kDa and a high content of Sulfur. These proteins belong to fibrillar proteins, which can be used as a matrix for the creation of new keratin-containing biocomposites with a wide range of applications in reparative medicine and tissue engineering. Based on the obtained keratin extract, polymer films with and without the addition of glycerol were made. Scanning electron microscopy revealed that glycerol provided the film structure with homogeneity and plasticity due to the accumulation of moisture after the fixation by water vapor. The X-ray microanalysis of films revealed such elements as Sodium, Silicon, Sulfur, Potassium. Among the detected elements, Sulfur has the largest share that is due to the large number of disulfide bonds in the keratin molecule. Conclusions. The polymer keratin films with the addition of glycerol demonstrated better mechanical properties and can be used in biomedicine.


Sign in / Sign up

Export Citation Format

Share Document