Maize root morphology responses to soil penetration resistance related to tillage and drought in a clayey soil

2017 ◽  
Vol 155 (7) ◽  
pp. 1137-1149 ◽  
Author(s):  
Y. B. HE ◽  
L. R. LIN ◽  
J. Z. CHEN

SUMMARYCrops often experience combined soil stresses. Root responses to soil penetration resistance (PR) and drought stress can be an important basis for crop management. In 2013/14, a 2-year experiment was conducted to evaluate the effect of tillage treatment and drought stress (no irrigation for 4, 12 and 20 days during the V10–V16 growth stage) on the root length, diameter, cortex and cortical cell, and grain yield of maize (Zea mays L.) in a clayey red soil in southern China. Total root length and average root diameter were significantly correlated with soil PR and moisture. The cortical cell file number increased with soil PR and drought stress, while cortical cell size increased only with soil PR. Soil PR and moisture played different roles in maize root morphology modifications, but were both affected by tillage practices. Deep ploughing and conventional tillage increased soil moisture under severe drought stress conditions, whereas soil compaction and no-till significantly increased soil PR. The results indicate that high PR in clayey red soil was responsible for a decrease in maize root size and grain yield under drought conditions.

2017 ◽  
Vol 16 (4) ◽  
pp. 289-295 ◽  
Author(s):  
Kumari Neelam ◽  
Gurpreet K. Sahi ◽  
Kishor Kumar ◽  
Kuldeep Singh

AbstractDrought is the major abiotic constraint to the rice production in the rain-fed areas across Asia and sub-Saharan Africa. Wild species of Oryza offer a wide spectrum of adaptive traits and can serve as potential donors of biotic and abiotic stress tolerance. At the Punjab Agricultural University, we are maintaining an active collection of 1630 accessions of wild species germplasm (AA, CC, BBCC and CCDD) of rice. These accessions were screened to assess genetic variation for drought tolerance under field conditions. Severe water stress was imposed at the late vegetative stage by withholding water initially for 25 d and then extended further to 35 d during kharif season in the years 2013–14 and 2015–16. The tolerance score for drought stress was based on the extent of leaf rolling and leaf drying. Based on the 2 years’ data, seven accessions from Oryza rufipogon, four from Oryza longistaminata and one each from Oryza officinalis and Oryza latifolia were found tolerant to drought stress. These selected accessions were further phenotype for root morphology. The average root length among the selected accessions ranges between 36 and 80 cm and the number of primary roots vary from 30 to 87 cm. The O. rufipogon accession IRGC 106433, O. longistaminata accession IRGC 92656A, O. officinalis accession IRGC 101152 and O. latifolia accession IRGC 80769 showed approximately 2–2.5 times longer root length and number than the indica rice elite cultivar PR121. The results indicated potentiality of selected wild species germplasm for conferring drought tolerance to the elite cultivars.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260556
Author(s):  
Ali Ahmad ◽  
Zubair Aslam ◽  
Maliha Naz ◽  
Sadam Hussain ◽  
Talha Javed ◽  
...  

Wheat is an important cereal crop, which is adversely affected by water deficit stress. The effect of induced stress can be reduced by the application of salicylic acid (SA). With the objective to combat drought stress in wheat, an experiment was conducted in greenhouse under hydroponic conditions. The treatments consisted of (a) no drought (DD0 = 0 MPa), mild drought (DD1 = -0.40 MPa) and severe drought (DD2 = -0.60 MPa) by applying PEG-8000, (b) two contrasting wheat varieties Barani-17 (drought tolerant) and Anaj-17 (drought-sensitive), and (c) foliar treatments of salicylic acid (0, 50 mM, 75 mM, and 100 mM). Evaluation of wheat plants regarding biochemical, physiological, and morphological attributes were rendered after harvesting of plants. Statistically, maximum shoot and root fresh and dry weights (18.77, 11.15 and 1.99, 1.81 g, respectively) were recorded in cultivar Barani-17 under no drought condition with the application of SA (100 mM). While, minimum shoot and root fresh and dry weights (6.65, 3.14 and 0.73, 0.61 g, respectively) were recorded in cultivar Anaj-2017 under mild drought stress without SA application. The maximum shoot length (68.0 cm) was observed in cultivar Barani-2017 under no drought condition with the application of SA (100 mM). While, maximum root length (59.67 cm) was recorded in cultivar Anaj-17 under moderate drought stress without application of SA. Further, minimum shoot length (28.67 cm) was recorded in Anaj-17 under moderate drought stress without SA application. Minimum root length (38.67 cm) was recorded in cultivar Barani-17 under no drought condition without SA application. Furthermore, maximum physio-biochemical traits, including membrane stability index (MSI), chlorophyl content, photosynthetic rates, stomatal conductance, antioxidant enzymatic activities and relative water content (RWC) were found highest in cultivar Barani-17 under no drought stress and SA application at 100 mM. However, minimum values of these traits were recorded in cultivar Anaj-17 under severe drought stress without SA application. Our results also demonstrated that under severe drought, application of SA at 100 mM significantly increased leaf nitrogen (N), phosphrus (P) and potassium (K) contents and cultivar Barani-17 demonstrated significantly higher values than Anaj-17. The obtained results also indicated that the cultivation of wheat under drought stress conditions noticeably declines the morphological, physiological, and biochemical attributes of the plants. However, the exogenous application of SA had a positive impact on wheat crop for enhancing its productivity.


2020 ◽  
Vol 12 (20) ◽  
pp. 8679
Author(s):  
Ping Tian ◽  
Hongli Lian ◽  
Zhengyu Wang ◽  
Ying Jiang ◽  
Congfeng Li ◽  
...  

The characterization of soil physicochemical properties and the resulting soil enzyme activity changes are crucial for understanding the effects of various tillage and straw management techniques on crop grain yield. In 2018–2019, we conducted a field micro–plot experiment to determine the effects of tillage depth and straw management on the soil physicochemical properties, enzyme activity, and maize grain yield. Six treatments were employed, including straw removal (CK), straw mixed with (SM), and straw buried (SB) into the soil under tillage depths of 10 (D10) and 30 cm (D30). The results demonstrated that SM and SB significantly increased the soil nitrate (NO3––N) content and decreased the ammonium (NH4+–N) content in the 0–20 cm soil layer in 2018 relative to CK. SM had greater soil urease (URE) and acid phosphatase (APH) activities in the 0–20 cm soil layer, and SB improved the soil APH activity at the 30–40 cm depth in both seasons. D30 obtained a lower penetration resistance in the 10–40 cm soil profile and higher soil organic carbon (SOC) and soil total nitrogen (STN) contents at the 30–40 cm soil depth relative to D10. The soil enzyme activity was positively related to the soil nutrient content and negatively related to the soil penetration resistance in the 0–20 cm soil layer, particularly in D30. Compared with CK, the grain yield was higher by 2.48–17.51% for SM and 7.48–24.46% for SB in 2018 and 2019, respectively. The structural equation model analysis suggested that the tillage depth mainly affected the soil penetration resistance (PR) and pH; however, straw management dominantly influenced the soil mineral N levels, leading to other soil property changes and crop production results. In conclusion, straw incorporation with deeper plow tillage might be an optimal straw return approach for soil quality improvement and sustainable maize production in northeast China.


2016 ◽  
Vol 43 (12) ◽  
pp. 1159 ◽  
Author(s):  
Muhammad Abid ◽  
Zhongwei Tian ◽  
Syed Tahir Ata-Ul-Karim ◽  
Feng Wang ◽  
Yang Liu ◽  
...  

Studying plants’ capability to adapt and recover from drought stress is essential because of the ever-changing nature of drought events. To evaluate the genotypically variable morpho-physiological adaptations to drought stress and recovery after re-watering, two wheat cultivars (Luhan-7 and Yangmai-16) were pot-cultured under three levels of water stress: severe (35–40% field capacity, FC) and moderate water deficits (55–60% FC) and well-watered conditions. Drought stress was applied at tillering (Feekes 2 stage) and jointing (Feekes 6 stage), respectively, followed by re-watering, and we observed changes in leaf characteristics, growth and physiological activities during water stress and rewatering periods as well as final grain yield traits at maturity. Results showed that drought stress adaptability associated with reduced leaf area, higher leaf thickness, chlorophyll, leaf dry matter and maintenance of leaf water potential were more strongly pronounced in Luhan-7 than in Yangmai-16. Under moderate stress both cultivars exhibited a small decrease in leaf gas-exchange and chlorophyll fluorescence activities, followed by rapid recovery. Under severe drought stress, Yangmai-16 displayed relatively less adaptability to drought, with a slower recovery after re-watering and a greater decrease in grain yield. It was concluded that even though crop growth rate completely recovered after re-watering, the final dry matter and grain yield outcomes were affected by pre-drought stress, and were dependant on the drought intensity, adaptability and recovery differences of the cultivars and growth stage. It was also concluded that genotypic variations in adaptability and recovery from drought stress are the indicators of drought tolerance and grain yield sustainability in wheat.


2018 ◽  
Vol 48 (2) ◽  
pp. 163-169 ◽  
Author(s):  
Doglas Bassegio ◽  
Marcos Vinicius Mansano Sarto ◽  
Ciro Antonio Rosolem ◽  
Jaqueline Rocha Wobeto Sarto

ABSTRACT Guar (Cyamopsis tetragonoloba L.) is commonly grown in arid lands, because of its high drought-tolerance. However, soil compaction may be a limiting factor to its growth. This study aimed to evaluate the guar growth, according to the soil penetration resistance (0.20 MPa, 0.33 MPa, 0.50 MPa, 0.93 MPa and 1.77 MPa, in a layer with depth between 0.15 m and 0.20 m), in a Rhodic Acrudox soil. The shoot and root dry mass, root length by the Q1/2 index (mechanical soil penetration resistance in which the root growth is reduced by 50 %) and root diameter were evaluated. The impairment of the guar shoot growth begins when the penetration resistance is greater than around 1 MPa. The soil compaction alters the distribution of guar roots in the soil profile, concentrating them in the 0.15 m layer, but it does not prevent roots from penetrating this layer and developing in depth. The root diameter increases in the compacted layer. A soil penetration resistance of up to 1.77 MPa does not influence the root length density below the compacted layer, as well as the total root length density of guar. Although the guar Q1/2 index is greater than 1.58, the shoot and root dry mass are impaired.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1121
Author(s):  
Idan Reingwirtz ◽  
Jake Uretsky ◽  
Italo F. Cuneo ◽  
Thorsten Knipfer ◽  
Clarissa Reyes ◽  
...  

Some grapevine rootstocks perform better than others during and after drought events, yet it is not clear how inherent and stress-induced differences in root morphology and anatomy along the length of fine roots are involved in these responses. Using a variety of growing conditions and plant materials, we observed significant differences in root diameter, specific root length (SRL) and root diameter distribution between two commonly used commercial grapevine rootstocks: Richter 110 (110R; drought resistant) and Millardet et de Grasset 101-14 (101-14Mgt; drought sensitive). The 110R consistently showed greater root diameters with smaller SRL and proportion of root length comprised of fine lateral roots. The 110R also exhibited significantly greater distance from tip to nearest lateral, longer white root length, and larger proportion of root length that is white under drought stress. Mapping of fine root cortical lacunae showed similar patterns between the rootstocks; mechanical failure of cortical cells was common in the maturation zone, limited near the root tip, and increased with drought stress for both genotypes; however, lacuna formed under wetter soil conditions in 110R. Results suggest that drought resistance in grapevine rootstocks is associated with thick, limitedly branched roots with a larger proportion of white-functional roots that tend to form lacuna under more mild water deficit, all of which likely favor continued resource acquisition at depth.


2020 ◽  
Author(s):  
Benfu Wang ◽  
Xiaolong Yang ◽  
Jianping Cheng ◽  
Liang Chen ◽  
Yuanyuan Jiang ◽  
...  

Abstract Drought stress is one of major threats to rice production. The weakening of leaf photosynthesis due to drought is the main reason for the reduction of grain yield, but its mechanism is still obscure. The objectives of this study were to reveal the physiological mechanism of drought stress affecting photosynthetic capacity and grain yield. Pot experiments were conducted with three rice cultivars, Hanyou113 (HY113), Huanghuazhan (HHZ) and Zhonghan3 (ZH3) under four water management treatments (traditional flooding (CK), mild drought stress (LD), moderate drought stress (MD) and severe drought stress (HD)) in 2013 and 2014. Compared with CK, grain yield was significantly reduced by 14.9%, 30.8% and 12.8% in HY113, HHZ and ZH3 under mild drought stress, 32.9%, 33.7% and 22.9% in HY113, HHZ and ZH3 under moderate drought stress and 53.6%, 45.6% and 30.7% in HY113, HHZ and ZH3 under severe drought stress, respectively. The photosynthetic rate (Pn) decreased by 49.0% from 20.0 to 10.2 µmol m-2 s-1 in HY113, and 67.6% from 23.4 to 7.58 µmol m-2 s-1 in HHZ, and 39.3% from 23.4 to 14.2 in ZH3. The Pn of HHZ was similar to that of ZH3 under CK conditions. The yield reduction of drought-resistant cultivars was smaller than that of conventional cultivars. Maintaining leaf water potentia (LWP), Pn, photosystem II (PSII) original light energy conversion efficiency, non–photochemical quenching coefficient (NPQ), and increasing in the ratio of photochemical reaction energy in fluorescence and antioxidant enzyme activity, is the physiological basis to achieve a relatively high photosynthesis. These traits could be the target for breeder to developing drought-tolerant varieties.


2019 ◽  
Vol 11 (3) ◽  
pp. 311
Author(s):  
Alessandra Maria de Lima Naoe ◽  
Joênes Mucci Peluzio ◽  
Lucas Koshy Naoe ◽  
Leonardo José Motta Campos ◽  
Waldesse Piragé de Oliveira Júnior

The study was carried out with the objective of verifying the effect of the bacterium Azospirillum brasilense in the behavior of the morphological characteristics of cultivars soybean submitted to drought stress. Two experiments were carried in randomized blocks with a split-split plot design, with four replications. We evaluated the cultivars TMG 132 and ANTA 82. The treatments were subjected to two irrigation depths: total irrigation (100% of crop evapotranspiration) and irrigation with drought stress (25% of crop evapotranspiration) and co-inoculated with Azospirillum brasilense and inoculated whit only Bradyrhizobium japonicum. The coefficients of the correlation between the characteristics: leaf area, plant height, root length, number of nodules, shoot dry matter, root dry matter and nodule dry matter were analyzed, as well as the effects over the productivity through the path analisys. The drought stress did not alter the correlations between the studied characteristics; however the alteration happened due to the inoculation method. The path analysis showed that the root length was the only variable that had a direct effect on soybean grain yield, and this occurred only inoculation. In the co-inoculated treatments with Azospirillum brasilense, there were greater indirect effects in grain yield due the root dry matter and shoot dry matter.


2018 ◽  
Vol 111 (2) ◽  
pp. 271 ◽  
Author(s):  
Aydin KHODAEI-JOGHAN ◽  
Majid GHOLAMHOSEINI ◽  
Majid AGHA-ALIKHANI ◽  
Farhad HABIBZADEH ◽  
Ali SOROOSHZADEH ◽  
...  

<p>The main objectives of this research were to determine the effects of applying organic and chemical fertilizers under different irrigation regimes on sunflower (<em>Helianthus annuus</em> L.) morphological traits, yield components, grain yield and grain quality. The experiment was conducted as spilt plots based on a randomized complete block design with three replicates. Irrigation treatments at three levels (well-irrigated, mild and severe drought stress) were allocated to main plots and eight fertilizer treatments (urea (F1), urea + composted cattle manure (F2), zeocompost (F3), vermicompost (F4), zeolite-amended chicken manure (Z-ACM) (F5), zeocompost + vermicompost (F6), zeocompost + Z-ACM (F7) and vermicompost + Z-ACM (F8)) were randomized in sub-plots. The results showed that irrespective of the drought stress intensity, organic fertilizer treatments produced more dry matter, heavier and greater grain than did chemical treatments. In well-irrigated plots, the highest grain yield was obtained from F6, F7 and F8 treatments. Under drought stress conditions, the highest grain yield was obtained from the high zeolite content organic fertilizers i.e. F3, F5 and F7. We concluded that amending soil with organic fertilizers in combination with zeolite<em> </em>can be a beneficial approach for decreasing chemical fertilizer application rates and improving the sustainability of agricultural systems.</p>


2013 ◽  
Vol 61 (2) ◽  
pp. 91-100 ◽  
Author(s):  
S. Bencze ◽  
K. Balla ◽  
T. Janda ◽  
O. Veisz

Phytotron experiments were conducted to examine the impact of elevated atmospheric CO2 level (750 μmol mol−1) on the drought tolerance of winter barley (Petra), durum wheat (Mv Makaroni) and spring oat (Mv Pehely) varieties. Under drought stress conditions, the durum wheat variety was found to be unaffected by CO2 enrichment, as neither the biomass or grain yield nor the antioxidant enzyme activities changed compared to those at ambient CO2. Despite the fact that the spring oat variety had similar grain yield loss due to drought at both CO2 levels, it exhibited reduced antioxidant enzyme activities under less severe drought, indicating a slightly increased tolerance to drought. Winter barley, which exhibited an extremely positive reaction to CO2 enrichment at the control water supply level, also showed increased drought tolerance in response to high CO2. It had low glutathione reductase, glutathione-S-transferase and ascorbate peroxidase activities even at the most severe drought stress levels, while it could also fully compensate for the negative effects of drought on biomass and grain yield parameters when grown at elevated CO2.


Sign in / Sign up

Export Citation Format

Share Document