scholarly journals Vitamin A and carotenoids in certain invertebrates. I. Marine Crustacea

Author(s):  
L. R. Fisher ◽  
S. K. Kon ◽  
S. Y. Thompson

Planktonic, benthic and littoral Crustacea were collected from localities around the British coast, from Norwegian and Faeroese waters and from the Antarctic, and their content of preformed vitamin A and carotenoid pigments was measured.Methods are described for the preservation of specimens, the extraction and separation of vitamin A and carotenoids and the measurement of vitamin A by chemical, physical and biological tests, and of carotenoids by physical tests.Free-swimming euphausiids were found to contain, in addition to large quantities of astaxanthin, high concentrations of preformed vitamin A, but no β-carotene.

1946 ◽  
Vol 36 (2) ◽  
pp. 95-99 ◽  
Author(s):  
B. C. Ray Sarkar ◽  
K. C. Sen

1. With the object of determining the vitamin A value of carotene in different green fodders, an investigation has been undertaken to study (i) the relation between the chemically determined carotene and its biological activity as compared with that of standard carotene, (ii) the purity of apparent carotene from different sources, (iii) absorption of carotene in rats, and (iv) the relative efficiency of the standard carotene and preformed vitamin A.2. Biological tests have shown that the chemical method of assay is a fair index of the true carotene content in green fodders, and carotene in the form of an extract is quite as effective in the system as that present in the plant tissues. β-Carotene appears to be predominant in these materials.


2001 ◽  
Vol 26 (2) ◽  
pp. 359-362
Author(s):  
G. Flachowsky ◽  
M. Schlenzig ◽  
Brigitta Kirsche ◽  
P. Lebzien

AbstractThe objective of the study was to investigate the influence of different levels of β-carotene supplements on the β-carotene concentration in the corpus luteum and on hormone concentrations in the plasma of heifers. 32 heifers (average body weight: 371 kg) were fed a low carotene diet (< 1 mg per kg DM) for 120 days. The heifers were divided into four groups according to body weight and age and supplied with 0, 100, 200 or 300 mg β-carotene per animal and day. Heifers were artifically inseminated after day 60 of the experiment and were slaughtered after day 120 of the experiment. Carotene concentration in the corpus luteum (2.3, 27, 50 and 81 μg/g for 0, 100, 200 and 300 mg β-carotene per animal per day), in plasma and in ovary was significantly influenced with increased carotene supplements. LH-concentration of plasma decreased and β-oestradiol-concentration increased with carotene supplementation. High concentrations of β-carotene in the corpus luteum and ovaries of cattle seem to act as a depot which is available when high vitamin A requirements during ovulation have to be met.


2019 ◽  
Vol 7 (2) ◽  
pp. 104
Author(s):  
Dias Diasasthisa ◽  
Darus J Paransa ◽  
Desy MH Mantiri ◽  
Antonius Rumengan ◽  
Veibe Warouw ◽  
...  

Carotenoids are pigments with a range of red, orange and yellow colors. In carotenoid and chlorophyll plants are located in chloroplasts which undergo photosynthesis as well as photosynthetic bacteria and fungi. Carotenoid compounds have antioxidant activity, anticancer, as precursors of vitamin A and can enhance immunity. Crustaceans like crabs Grapsus sp. have carotenoid pigments, visible red, orange, and yellow are scattered in the carapace. Pigments found in crustaceans as well as crabs of Grapsus sp. generally sourced from food eaten by the crab. To determine the process of carotenoid pigment metabolism, each crab organ of Grapsus sp. isolated using thin layer chromatography separation method and column chromatography to determine the type of pigment contained therein. Pigment types identified in the crabs of Grapsus sp. males using the TLC method: β-carotene, Astasen type, Cantasantin, Astasantin, and Adonirubin. Pigment types identified in the crabs of Grapsus sp. males using the CC method: β-carotene, Astasen, β-cryptosanthine, Zeaxantine, and Cryptosanthine. Keywords : Grapsus sp., Thin Layer Chromatography, Column Chromatography, Carotenoids Pigments.             Karotenoid merupakan pigmen dengan kisaran warna merah, orange dan kuning. Pada tumbuhan karotenoid dan klorofil terletak pada kloroplas yang mengalami proses fotosintesis seperti juga pada bakteri fotosintetik dan fungi. Senyawa karotenoid memiliki aktivitas antioksidan, antikanker, sebagai prekursor vitamin A dan dapat meningkatkan imunitas. Krustasea seperti kepiting Grapsus sp. mempunyai pigmen karotenoid, terlihat warna merah, jingga, dan kuning yang tersebar pada karapas. Pigmen yang terdapat pada krustasea demikian juga pada kepiting Grapsus sp. umumnya bersumber dari makanan yang dimakan oleh kepiting tersebut. Untuk mengetahui proses metabolisme pigmen karotenoid maka masing-masing organ kepiting Grapsus sp. diisolasi dengan menggunakan metode pemisahan kromatografi lapis tipis dan kromatografi kolom untuk mengetahui jenis pigmen yang terkandung didalamnya. Jenis pigmen yang teridentifikasi pada kepiting Grapsus sp. jantan dengan metode KLT yaitu : β- karoten, Tipe Astasen, Kantasantin, Astasantin, dan Adonirubin. Jenis pigmen yang teridentifikasi pada kepiting Grapsus sp. jantan dengan metode KK  yaitu : β- karoten, Astasen, β-kriptosantin, Zeaxantin, dan Kriptosantin. Kata Kunci : Grapsus sp., Kromatografi Lapis Tipis, Kromatografi Kolom, Pigmen Karotenoid.  


2019 ◽  
Vol 149 (6) ◽  
pp. 951-958 ◽  
Author(s):  
Tyler J Titcomb ◽  
Mikayla S Kaeppler ◽  
Sofía Beatriz Sandoval Cates ◽  
Jamie M Shannon ◽  
Philipp W Simon ◽  
...  

ABSTRACT Background Carrots are an important horticultural crop that contain provitamin A carotenoids (PACs). Orange carrots have high concentrations of α-carotene, which upon central cleavage yields 1 retinal and 1 α-retinal molecule. The leaves of carrot plants are a source of PACs when consumed. Objective Male Mongolian gerbils aged 27–30 d were used to assess the bioefficacy of carrot leaves to maintain vitamin A (VA) status and investigate whether the ratio of α- to β-carotene (α:β-carotene) affected bioefficacy. Methods After 3 wk depletion, baseline gerbils were killed (n = 6) and the remaining gerbils (n = 60) were divided into 6 groups to receive 4 VA-deficient, carrot leaf–fortified feeds (1:1.4, 1:2.5, 1:5.0, and 1:80 α:β-carotene ratio) equalized to 4.8 nmol/g β-carotene equivalents (βCEs), or VA-deficient feed with (VA+) or without (VA−) retinyl acetate supplements. Carrot-leaf powder from 4 carrot plants with differing α:β-carotene ratios was used. After 4 wk, gerbils were killed and tissues were collected and analyzed for retinoids by HPLC. Results VA+ had higher total liver VA (means ± SD 0.91 ± 0.29 μmol) than all other groups (range: 0.40–0.62) (P ≤ 0.03), and the carrot leaf treatments did not differ from baseline (0.55 ± 0.09 μmol). VA− (0.40 ± 0.23 μmol VA/liver) did not differ from the leaf-fed groups, but 30% became VA deficient (defined as <0.1 μmol VA/g liver). α-Retinol accumulated in livers and lungs and was correlated to total α-carotene consumption (R2 = 0.83 and 0.88, respectively; P < 0.0001). Bioefficacy factors ranged from 4.2 to 6.2 μg βCE to 1 μg retinol. Conclusions Carrot leaves maintain VA status and prevent deficiency in gerbils regardless of the α:β-carotene ratio. The bioconversion of PACs from carrot leaves to retinol is similar to what has been reported for other green leafy vegetables, making the consumption of carrot leaves a viable method to improve dietary PAC intake.


2014 ◽  
Vol 84 (Supplement 1) ◽  
pp. 25-29 ◽  
Author(s):  
Guangwen Tang

Humans need vitamin A and obtain essential vitamin A by conversion of plant foods rich in provitamin A and/or absorption of preformed vitamin A from foods of animal origin. The determination of the vitamin A value of plant foods rich in provitamin A is important but has challenges. The aim of this paper is to review the progress over last 80 years following the discovery on the conversion of β-carotene to vitamin A and the various techniques including stable isotope technologies that have been developed to determine vitamin A values of plant provitamin A (mainly β-carotene). These include applications from using radioactive β-carotene and vitamin A, depletion-repletion with vitamin A and β-carotene, and measuring postprandial chylomicron fractions after feeding a β-carotene rich diet, to using stable isotopes as tracers to follow the absorption and conversion of plant food provitamin A carotenoids (mainly β-carotene) in humans. These approaches have greatly promoted our understanding of the absorption and conversion of β-carotene to vitamin A. Stable isotope labeled plant foods are useful for determining the overall bioavailability of provitamin A carotenoids from specific foods. Locally obtained plant foods can provide vitamin A and prevent deficiency of vitamin A, a remaining worldwide concern.


2016 ◽  
Vol 9 (1) ◽  
pp. 80-95
Author(s):  
Agus Sudibyo ◽  
Sardjono Sardjono

Crude palm oil (CPO)is the richest natural plant source of carotenoids in terms of retinol (pro-vitamin A) equivalent, whereas palm oil mill effluent (POME) is generated from palm oil industry that contains oil and carotenes that used to be treated before discharge. Carotenoids are importance in animals and humans for the purpose of the enhancement of immune response, conversion of vitamin A and scavenging of oxygen radicals. This component has different nutritional  functions and benefits to humaan health. The growing interest in the other natural sources of beta-carotene and growing awareness to prevent pollution has stimulated the industrial use of CPO and POME as a raw material for carotenoids extraction. Various technologies of extraction and separation have been developed in order to recover of carotenoids.This article reports on various technologies that have been developed in order to recover of carotenoids from being destroyed in commercial refining of palm oil and effects of some various treatments on the extraction end separation for carotenoid from palm oil and carotenoids concentration. Principally, there are different technologies, and there is one some future which is the use of solvent. Solvent plays important role  in the most technologiest, however the problem of solvents which are used is that they posses potentiaal fire health and environmental hazards. Hence selection of the  most safe, environmentally friendly and cost effective solvent is important to design of alternative extraction methods.Chemical molecular product design is one of the methods that are becoming more popular nowadays for finding solvent with the desired properties prior to experimental testing.ABSTRAKMinyak sawit kasar merupakan sumber karotenoid terkaya yang berasal dari tanaman sawit sebagai senyawa yang sama dengan retinol atau pro-vitamin A; sedangkan limbah pengolahan minyak sawit dihasilkan dari industri pengolahan minyak sawit yang berisi minyak dan karotene yang perlu diberi perlakuan terlebih dahulu sebelum dibuang. Karotenoid merupakan bahan penting yang diperlukan pada hewan dan manusia guna memperkuat tanggapan terhadap kekebalan, konversi ke vitamin A dan penangkapan gugus oksigen radikal. Dengan berkembangnya ketertarikan dalam mencari beta-karotene yang bersumber dari alam lain dan meningkatnya kesadaran untuk mencegah adanya pencemaran lingkungan, maka mendorong suatu industri untuk menggunakan CPO dan POME sebagai bahan baku untuk diekstrak karotenoidnya. Berbagai macam teknologi guna mengekstrak dan memisahkan karotenoid telah dikembangkan untuk mendapatkan kembali karotenoidnya. Makalah ini melaporkan dan membahas berbagai jenis teknologi yang telah dikembangkan guna mendapatkan kembali senyawa karotenoid dari kerusakan di dalam proses pemurnian minyak sawit secara komersial dan pengaruh beberapa perlakuan terhadap ekstrasi dan pemisahan karotenoid dari minyak sawit dan konsentrasi karotenoidnya. Pada prinsipnya, berbagai teknologi yang digunakan untuk mengekstrak dan memisahkan karotenoid terdapat perbedaan, dan terdapat salah satu teknologi yang digunakan untuk esktrasi dan pemisahan karotenoid adalah menggunakan bahan pelarut. Pelarut yang digunakan mempunyai peranan yang penting dalam teknologi ekstrasi; namun pelarut yang digunakan untuk mengekstrak tersebut mempunyai persoalan karena berpotensi mengganggu kesehatan dan membahayakan cemaran lingkungan. Oleh karena itu, pemilihan jenis teknologi yang aman, ramah terhadap lingkungan dan biaya yang efektif untuk penggunaan pelarut merupakan hal penting sebelum dilakukan desain metode/teknologi alternatif untuk esktrasi karotenoid. Pola produk molekuler kimia merupakan salah satu metode yang saat ini menjadi lebih populer untuk mencari pelarut dengan sifat-sifat yang dikehendaki sebelum diujicobakan. Kata kunci :    karotenoid, ekstrasi, pemisahan, teknologi, minyak sawit kasar, limbah industri pengolahan sawit.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 993
Author(s):  
Su Lee Kuek ◽  
Azmil Haizam Ahmad Tarmizi ◽  
Raznim Arni Abd Razak ◽  
Selamat Jinap ◽  
Maimunah Sanny

This study aims to evaluate the influence of Vitamin A and E homologues toward acrylamide in equimolar asparagine-glucose model system. Vitamin A homologue as β-carotene (BC) and five Vitamin E homologues, i.e., α-tocopherol (AT), δ-tocopherol (DT), α-tocotrienol (ATT), γ-tocotrienol (GTT), and δ-tocotrienol (DTT), were tested at different concentrations (1 and 10 µmol) and subjected to heating at 160 °C for 20 min before acrylamide quantification. At lower concentrations (1 µmol; 431, 403, 411 ppm, respectively), AT, DT, and GTT significantly increase acrylamide. Except for DT, enhancing concentration to 10 µmol (5370, 4310, 4250, 3970, and 4110 ppm, respectively) caused significant acrylamide formation. From linear regression model, acrylamide concentration demonstrated significant depreciation over concentration increase in AT (Beta = −83.0, R2 = 0.652, p ≤ 0.05) and DT (Beta = −71.6, R2 = 0.930, p ≤ 0.05). This study indicates that different Vitamin A and E homologue concentrations could determine their functionality either as antioxidants or pro-oxidants.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1131 ◽  
Author(s):  
Federico Di Marco ◽  
Francesco Trevisani ◽  
Pamela Vignolini ◽  
Silvia Urciuoli ◽  
Andrea Salonia ◽  
...  

Pasta is one of the basic foods of the Mediterranean diet and for this reason it was chosen for this study to evaluate its antioxidant properties. Three types of pasta were selected: buckwheat, rye and egg pasta. Qualitative–quantitative characterization analyses were carried out by HPLC-DAD to identify antioxidant compounds. The data showed the presence of carotenoids such as lutein and polyphenols such as indoleacetic acid, (carotenoids from 0.08 to 0.16 mg/100 g, polyphenols from 3.7 to 7.4 mg/100 g). To assess the effect of the detected metabolites, in vitro experimentation was carried out on kidney cells models: HEK-293 and MDCK. Standards of β-carotene, indoleacetic acid and caffeic acid, hydroalcoholic and carotenoid-enriched extracts from samples of pasta were tested in presence of antioxidant agent to determine viability variations. β-carotene and indoleacetic acid standards exerted a protective effect on HEK-293 cells while no effect was detected on MDCK. The concentrations tested are likely in the range of those reached in body after the consumption of a standard pasta meal. Carotenoid-enriched extracts and hydroalcoholic extracts showed different effects, observing rescues for rye pasta hydroalcoholic extract and buckwheat pasta carotenoid-enriched extract, while egg pasta showed milder dose depending effects assuming pro-oxidant behavior at high concentrations. The preliminary results suggest behaviors to be traced back to the whole phytocomplexes respect to single molecules and need further investigations.


Sign in / Sign up

Export Citation Format

Share Document