Functional connectivity in the brain and human intelligence

2007 ◽  
Vol 30 (2) ◽  
pp. 169-170 ◽  
Author(s):  
Vincent J. Schmithorst

AbstractA parieto-frontal integration theory (P-FIT) model of human intelligence has been proposed based on a review of neuroimaging literature and lesion studies. The P-FIT model provides an important basis for future research. Future studies involving connectivity analyses and an integrative approach of imaging modalities using the P-FIT model should provide vastly increased understanding of the biological bases of intelligence.

2020 ◽  
Vol 21 (21) ◽  
pp. 7848 ◽  
Author(s):  
Kaspar Gierke ◽  
Julia von Wittgenstein ◽  
Maike Hemmerlein ◽  
Jenny Atorf ◽  
Anneka Joachimsthaler ◽  
...  

Munc13 isoforms are constituents of the presynaptic compartment of chemical synapses, where they govern important steps in preparing synaptic vesicles for exocytosis. The role of Munc13-1, -2 and -3 is well documented in brain neurons, but less is known about their function and distribution among the neurons of the retina and their conventional and ribbon-type chemical synapses. Here, we examined the retinae of Munc13-1-, -2-, and -3-EXFP knock-in (KI) mice with a combination of immunocytochemistry, physiology, and electron microscopy. We show that knock-in of Munc13-EXFP fusion proteins did not affect overall retinal anatomy or synapse structure, but slightly affected synaptic transmission. By labeling Munc13-EXFP KI retinae with specific antibodies against Munc13-1, -2 and -3, we found that unlike in the brain, most retinal synapses seem to operate with a single Munc13 isoform. A surprising exception to this rule was type 6 ON bipolar cells, which expressed two Munc13 isoforms in their synaptic terminals, ubMunc13-2 and Munc13-3. The results of this study provide an important basis for future studies on the contribution of Munc13 isoforms in visual signal processing in the mammalian retina.


2021 ◽  
Vol 12 (1) ◽  
pp. 1-28
Author(s):  
Aslan Dizaji ◽  
◽  
Bruno Hebling Vieira ◽  
Mohmmad Reza Khodaei ◽  
Mahnaz Ashrafi ◽  
...  

Human intelligence has always been a fascinating subject for scientists. Since the inception of Spearman’s general intelligence in the early 1900s, there has been significant progress towards characterizing different aspects of intelligence and its relationship with structural and functional features of the brain. In recent years, the invention of sophisticated brain imaging devices using Diffusion-Weighted Imaging (DWI) and functional Magnetic Resonance Imaging (fMRI) has allowed researchers to test hypotheses about neural correlates of intelligence in humans.This review summarizes recent findings on the associations of human intelligence with neuroimaging data. To this end, first, we review the literature that has related brain morphometry to intelligence. Next, we elaborate on the applications of DWI and resting-state fMRI on the investigation of intelligence. Then, we provide a survey of literature that has used multimodal DWI-fMRI to shed light on intelligence. Finally, we discuss the state-of-the-art of individualized prediction of intelligence from neuroimaging data and point out future strategies. Future studies hold promising outcomes for machine learning-based predictive frameworks using neuroimaging features to estimate human intelligence.


Author(s):  
Mukhil Azhagan M. S ◽  
Dhwani Mehta ◽  
Hangwei Lu ◽  
Sudarshan Agrawal ◽  
Mark Tehranipoor ◽  
...  

Abstract Globalization and complexity of the PCB supply chain has made hardware assurance a challenging task. An automated system to extract the Bill of Materials (BoM) can save time and resources during the authentication process, however, there are numerous imaging modalities and image analysis techniques that can be used to create such a system. In this paper we review different imaging modalities and their pros and cons for automatic PCB inspection. In addition, image analysis techniques commonly used for such images are reviewed in a systematic way to provide a direction for future research in this area. Index Terms—Component Detection, PCB, Authentication, Image Analysis, Machine Learning


2018 ◽  
Vol 15 (8) ◽  
pp. 743-750 ◽  
Author(s):  
Kresimir Ukalovic ◽  
Sijia Cao ◽  
Sieun Lee ◽  
Qiaoyue Tang ◽  
Mirza Faisal Beg ◽  
...  

Background: Recent work on Alzheimer's disease (AD) diagnosis focuses on neuroimaging modalities; however, these methods are expensive, invasive, and not available to all patients. Ocular imaging of biomarkers, such as drusen in the peripheral retina, could provide an alternative method to diagnose AD. Objective: This study compares macular and peripheral drusen load in control and AD eyes. Methods: Postmortem eye tissues were obtained from donors with a neuropathological diagnosis of AD. Retina from normal donors were processed and categorized into younger (<55 years) and older (>55 years) groups. After fixation and dissection, 3-6 mm punches of RPE/choroid were taken in macular and peripheral (temporal, superior, and inferior) retinal regions. Oil red O positive drusen were counted and grouped into two size categories: small (<63 μm) and intermediate (63-125 μm). Results: There was a significant increase in the total number of macular and peripheral hard drusen in older, compared to younger, normal eyes (p<0.05). Intermediate hard drusen were more commonly found in the temporal region of AD eyes compared to older normal eyes, even after controlling for age (p<0.05). Among the brain and eye tissues from AD donors, there was a significant relationship between cerebral amyloid angiopathy (CAA) severity and number of temporal intermediate hard drusen (r=0.78, p<0.05). Conclusion: Imaging temporal drusen in the eye may have benefit for diagnosing and monitoring progression of AD. Our results on CAA severity and temporal intermediate drusen in the AD eye are novel. Future studies are needed to further understand the interactions among CAA and drusen formation.


2020 ◽  
Vol 16 (6) ◽  
pp. 860-865
Author(s):  
Sedigheh Tavakoli-Dastjerdi ◽  
Mandana Tavakkoli-Kakhki ◽  
Ali R. Derakhshan ◽  
Azam Teimouri ◽  
Malihe Motavasselian

Background: Anal fissure (AF) is a common disease associated with severe pain and reduced quality of life. Factors related to lifestyle, including diet and bowel habits, play a pivotal role in its pathogenesis. Most of the chronic fissures are not responsive to drugs and more likely to recur. Given the significance of diet in Persian medicine (PM), investigation on physiopathology and appropriate foods can be useful for decreases in AF symptoms and consequences. Objective: This study was intended to evaluate the role of diet in the formation and progression of AF from the perspective of PM. Methods: In this study, the most important resources of PM dating back to thousands of years were reviewed. All these textbooks contained a section on AF, its causes, and treatment. Further analysis was performed on these resources in comparison with databank and resources of modern medicine to develop a food-based strategy for AF management. Results: From the view of PM, the warmth and dryness of anus temperament accounted for AF. Both Persian and modern medicine identified constipation as another cause for AF. Therefore, avoidance from some foods and commercial baked goods was recommended. Both Persian and modern medicine forbad the following foods: potato, cabbage, cauliflower, pasta, beef, fish, and so forth. High fiber and oligo-antigen diets with some limitations have garnered more attention. Conclusion: An integrative approach is recommended employing both Persian and modern medicine for AF. There have been some evidence in this regard, however standardized clinical trials are required for future research.


2020 ◽  
Vol 4 (11) ◽  
Author(s):  
Katherine M Ranard ◽  
Matthew J Kuchan ◽  
John W Erdman

ABSTRACT Studying vitamin E [α-tocopherol (α-T)] metabolism and function in the brain and other tissues requires an animal model with low α-T status, such as the transgenic α-T transfer protein (Ttpa)–null (Ttpa−/−) mouse model. Ttpa+/− dams can be used to produce Ttpa−/− and Ttpa+/+mice for these studies. However, the α-T content in Ttpa+/− dams’ diet requires optimization; diets must provide sufficient α-T for reproduction, while minimizing the transfer of α-T to the offspring destined for future studies that require low baseline α-T status. The goal of this work was to assess the effectiveness and feasibility of 2 breeding diet strategies on reproduction outcomes and offspring brain α-T concentrations. These findings will help standardize the breeding methodology used to generate the Ttpa−/− mice for neurological studies.


2021 ◽  
Vol 22 (11) ◽  
pp. 6141
Author(s):  
Teodora Larisa Timis ◽  
Ioan Alexandru Florian ◽  
Sergiu Susman ◽  
Ioan Stefan Florian

Aneurysms and vascular malformations of the brain represent an important source of intracranial hemorrhage and subsequent mortality and morbidity. We are only beginning to discern the involvement of microglia, the resident immune cell of the central nervous system, in these pathologies and their outcomes. Recent evidence suggests that activated proinflammatory microglia are implicated in the expansion of brain injury following subarachnoid hemorrhage (SAH) in both the acute and chronic phases, being also a main actor in vasospasm, considerably the most severe complication of SAH. On the other hand, anti-inflammatory microglia may be involved in the resolution of cerebral injury and hemorrhage. These immune cells have also been observed in high numbers in brain arteriovenous malformations (bAVM) and cerebral cavernomas (CCM), although their roles in these lesions are currently incompletely ascertained. The following review aims to shed a light on the most significant findings related to microglia and their roles in intracranial aneurysms and vascular malformations, as well as possibly establish the course for future research.


2019 ◽  
Vol 9 (1) ◽  
pp. 11 ◽  
Author(s):  
Ángel Romero-Martínez ◽  
Macarena González ◽  
Marisol Lila ◽  
Enrique Gracia ◽  
Luis Martí-Bonmatí ◽  
...  

Introduction: There is growing scientific interest in understanding the biological mechanisms affecting and/or underlying violent behaviors in order to develop effective treatment and prevention programs. In recent years, neuroscientific research has tried to demonstrate whether the intrinsic activity within the brain at rest in the absence of any external stimulation (resting-state functional connectivity; RSFC) could be employed as a reliable marker for several cognitive abilities and personality traits that are important in behavior regulation, particularly, proneness to violence. Aims: This review aims to highlight the association between the RSFC among specific brain structures and the predisposition to experiencing anger and/or responding to stressful and distressing situations with anger in several populations. Methods: The scientific literature was reviewed following the PRISMA quality criteria for reviews, using the following digital databases: PubMed, PsycINFO, Psicodoc, and Dialnet. Results: The identification of 181 abstracts and retrieval of 34 full texts led to the inclusion of 17 papers. The results described in our study offer a better understanding of the brain networks that might explain the tendency to experience anger. The majority of the studies highlighted that diminished RSFC between the prefrontal cortex and the amygdala might make people prone to reactive violence, but that it is also necessary to contemplate additional cortical (i.e. insula, gyrus [angular, supramarginal, temporal, fusiform, superior, and middle frontal], anterior and posterior cingulated cortex) and subcortical brain structures (i.e. hippocampus, cerebellum, ventral striatum, and nucleus centralis superior) in order to explain a phenomenon as complex as violence. Moreover, we also described the neural pathways that might underlie proactive violence and feelings of revenge, highlighting the RSFC between the OFC, ventral striatal, angular gyrus, mid-occipital cortex, and cerebellum. Conclusions. The results from this synthesis and critical analysis of RSFC findings in several populations offer guidelines for future research and for developing a more accurate model of proneness to violence, in order to create effective treatment and prevention programs.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 883 ◽  
Author(s):  
Debajyoti Chowdhury ◽  
Chao Wang ◽  
Ai-Ping Lu ◽  
Hai-Long Zhu

Circadian rhythms have a deep impact on most aspects of physiology. In most organisms, especially mammals, the biological rhythms are maintained by the indigenous circadian clockwork around geophysical time (~24-h). These rhythms originate inside cells. Several core components are interconnected through transcriptional/translational feedback loops to generate molecular oscillations. They are tightly controlled over time. Also, they exert temporal controls over many fundamental physiological activities. This helps in coordinating the body’s internal time with the external environments. The mammalian circadian clockwork is composed of a hierarchy of oscillators, which play roles at molecular, cellular, and higher levels. The master oscillation has been found to be developed at the hypothalamic suprachiasmatic nucleus in the brain. It acts as the core pacemaker and drives the transmission of the oscillation signals. These signals are distributed across different peripheral tissues through humoral and neural connections. The synchronization among the master oscillator and tissue-specific oscillators offer overall temporal stability to mammals. Recent technological advancements help us to study the circadian rhythms at dynamic scale and systems level. Here, we outline the current understanding of circadian clockwork in terms of molecular mechanisms and interdisciplinary concepts. We have also focused on the importance of the integrative approach to decode several crucial intricacies. This review indicates the emergence of such a comprehensive approach. It will essentially accelerate the circadian research with more innovative strategies, such as developing evidence-based chronotherapeutics to restore de-synchronized circadian rhythms.


Sign in / Sign up

Export Citation Format

Share Document