Cultivating the increasingly popular medicinal plant, goldenseal: Review and update

2001 ◽  
Vol 16 (3) ◽  
pp. 131-140 ◽  
Author(s):  
Adrianne Sinclair ◽  
Paul M. Catling

AbstractInterest in the cultivation of goldenseal is increasing and this may have benefits for agriculture, human health, and conservation. To enable a better understanding of growing conditions, cultivation methods reported in the literature were reviewed, 21 natural goldenseal populations in the northern portion of its natural range in North America were described and analyzed in terms of population size and health, and 15 successful growers were interviewed on requirements for optimal cultivation. Growing conditions in the wild were compared to those reported in the cultivation literature. Summary of data from natural populations suggests goldenseal grows best in mixed hardwood forests, under 60–65% shade, in moist sandy loam soils high in organic matter, with pH 5.7 to 6.3. Similarly, review of the literature suggests that goldenseal grows best in moist, well-drained loams high in organic matter, with pH 5.5 to 6.5. Reported shade requirements vary but 47–80% shade is considered optimal. Growing conditions reported by growers were also consistent with the cultivation literature and similar to conditions of wild populations. Although optimal growing conditions are similar to those for many crops, goldenseal is relatively robust and can grow well in a variety of conditions including wet, predominantly sandy or clay soils with pH as low as 4.8 and as high as 7.8. Cultivation can utilize a ginseng crop infrastructure and goldenseal has been recommended as a rotation crop for ginseng. Commercial production of goldenseal is potentially advantageous because (1) it is an environmentally friendly crop; (2) it has been grown successfully far outside its natural range, is easy to grow, and is considered potentially profitable; and (3) it is relatively inexpensive, having low energy, land area, and fertilization requirements. Development of a sustainable crop may contribute to the protection of native wild germplasm, which can provide valuable material for crop improvement.

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 274
Author(s):  
Sara Mayo-Prieto ◽  
Alejandra J. Porteous-Álvarez ◽  
Sergio Mezquita-García ◽  
Álvaro Rodríguez-González ◽  
Guzmán Carro-Huerga ◽  
...  

Spain has ranked 6th on the harvested bean area and 8th in bean production in the European Union (EU). The soils of this area have mixed silt loam and sandy loam texture, with moderate clay content, neutral or acidic pH, rich in organic matter and low carbonate levels, providing beans with high water absorption capacity and better organoleptic qualities after cooking. Similar to other crops, it is attacked by some phytopathogens. Hitherto, chemical methods have been used to control these organisms. However, with the Reform of the Community Agrarian Policy in the EU, the number of authorized plant protection products has been reduced to prevail food security, as well as to be sustainable in the long term, giving priority to the non-chemical methods that use biological agents, such as Trichoderma. This study aimed to investigate the relative importance of various crop soil parameters in the adaptation of Trichoderma spp. autoclaved soils (AS) and natural soils (NS) from the Protected Geographical Indication (PGI) “Alubia La Bañeza—León” that were inoculated with Trichoderma velutinum T029 and T. harzianum T059 and incubated in a culture chamber at 25 °C for 15 days. Their development was determined by quantitative PCR. Twelve soil samples were selected and analyzed from the productive zones of Astorga, La Bañeza, La Cabrera, Esla-Campos and Páramo. Their physicochemical characteristics were different by zone, as the texture of soils ranged between sandy loam and silt loam and the pH between strongly acid and slightly alkaline, as well as the organic matter (OM) concentration between low and remarkably high. Total C and N concentrations and their ratio were between medium and high in most of the soils and the rest of the micronutrients had an acceptable concentration except for Paramo’s soil. Both Trichoderma species developed better in AS than in NS, T. velutinum T029 grew better with high levels of OM, total C, ratio C:N, P, K, Fe, and Zn than T. harzianum T059 in clay soils, with the highest values of cation exchange capacity (CEC), pH, Ca, Mg and Mn. These effects were validated by Canonical Correlation Analysis (CCA), texture, particularly clay concentration, OM, electrical conductivity (EC), and pH (physical parameters) and B and Cu (soil elements) are the main factors explaining the influence in the Trichoderma development. OM, EC, C:N ratio and Cu are the main soil characteristics that influence in T. velutinum T029 development and pH in the development of T. harzianum T059.


2021 ◽  
Author(s):  
Tomos Potter ◽  
Anja Felmy

AbstractIn wild populations, large individuals have disproportionately higher reproductive output than smaller individuals. We suggest an ecological explanation for this observation: asymmetry within populations in rates of resource assimilation, where greater assimilation causes both increased reproduction and body size. We assessed how the relationship between size and reproduction differs between wild and lab-reared Trinidadian guppies. We show that (i) reproduction increased disproportionately with body size in the wild but not in the lab, where effects of resource competition were eliminated; (ii) in the wild, the scaling exponent was greatest during the wet season, when resource competition is strongest; and (iii) detection of hyperallometric scaling of reproduction is inevitable if individual differences in assimilation are ignored. We propose that variation among individuals in assimilation – caused by size-dependent resource competition, niche expansion, and chance – can explain patterns of hyperallometric scaling of reproduction in natural populations.


2020 ◽  
Author(s):  
Martin Reichard ◽  
Radim Blažek ◽  
Jakub Žák ◽  
Petr Kačer ◽  
Oldřich Tomášek ◽  
...  

AbstractSex differences in lifespan and aging are widespread among animals, with males usually the shorter-lived sex. Despite extensive research interest, it is unclear how lifespan differences between the sexes are modulated by genetic, environmental and social factors. We combined comparative data from natural populations of annual killifishes with experimental results on replicated captive populations, showing that females consistently outlived males in the wild. This sex-specific survival difference persisted in social environment only in two most aggressive species, and ceased completely when social and physical contacts were prevented. Demographically, neither an earlier start nor faster rate of aging accounted for shorter male lifespans, but increased baseline mortality and the lack of mortality deceleration in the oldest age shortened male lifespan. The sexes did not differ in any measure of functional aging we recorded. Overall, we demonstrate that sex differences in lifespan and aging may be ameliorated by modulating social and environmental conditions.


Genetics ◽  
1978 ◽  
Vol 88 (4) ◽  
pp. 755-759
Author(s):  
Annie Fleuriet

ABSTRACT Polymorphism for both alleles of a gene ref(2)P, which is a usual trait of French natural populations of Drosophila melanogaster, can be reproduced in experimental conditions. ref(2)P is a gene for resistance to the hereditary, noncontagious Rhabdovirus α, responsible for CO2 sensitivity in Drosophila melanogaster. The equilibrium frequencies observed in cages are the same as in the wild, whether α virus is present or not. The rapid rate of return to these equilibrium frequencies indicates that strong forces, which remain to be determined, are responsible for the maintenance of this polymorphism.


1976 ◽  
Vol 56 (3) ◽  
pp. 129-138 ◽  
Author(s):  
A. J. MACLEAN

The Cd concentration in 10 plant species grown in a neutral surface soil (0.65 ppm Cd) varied from 0.18 ppm in potato tubers to 0.99 ppm in soybean roots on a dry matter basis. Addition of 5 ppm Cd increased the concentrations in the plants markedly and they were particularly high in lettuce (10.36 ppm) and tobacco leaves (11.57 ppm). Cd concentrations tended to be lower in the edible portion (seed, fruit, tubers) than in other plant parts. Added Cd affected yields in only a few instances. But in another experiment, Cd added at a rate of 5 ppm to five soils decreased the yield of lettuce in most instances. In a comparison of results for two similarly managed sandy loam soils, nearly neutral in reaction but differing in organic matter content (2.17 vs. 15.95% organic C), the concentration of Cd was lower in lettuce grown in the soil with the higher amount of organic matter. The Cd content of the lettuce was reduced by liming some of the acid soils. Addition of Cd increased the concentration of Zn in the plants appreciably, but added Zn did not affect Cd uptake. In an incubation experiment comprising five soils, DTPA (diethylenetriamine-pentaacetic acid) extractable Cd decreased with liming of three Cd-treated acid soil samples. In comparisons of two sandy loam soils and of surface and subsoil layers of a sand, extractable Cd increased with higher amounts of soil organic matter.


Weed Science ◽  
1982 ◽  
Vol 30 (6) ◽  
pp. 688-691 ◽  
Author(s):  
Michael G. Patterson ◽  
Gale A. Buchanan ◽  
Robert H. Walker ◽  
Richard M. Patterson

Analysis of fluometuron [1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea] in soil solution after application of 0.5 or 1.0 ppmw revealed up to five-fold differences among three Alabama soils (Lucedale fine sandy loam, Decatur silty clay loam, and Sacul loam). Differences in fluometuron in soil solution were attributed to variable organic matter present and clay fractions. Fluometuron concentration in soil solution for each soil correlated well with control of four broadleaf weed species in a field experiment.


ael ◽  
2016 ◽  
Vol 1 (1) ◽  
pp. 160023 ◽  
Author(s):  
Zhongqi He ◽  
Mingchu Zhang ◽  
Aiqin Zhao ◽  
O. Modesto Olanya ◽  
Robert P. Larkin ◽  
...  

1994 ◽  
Vol 24 (8) ◽  
pp. 1726-1733 ◽  
Author(s):  
J. Beaulieu ◽  
J.-P. Simon

The level of genetic diversity of natural populations of eastern white pine (Pinusstrobus L.) from Quebec was estimated from allozyme variants of 18 loci coding 12 enzyme systems. On average, a white pine population was polymorphic at 50.6% of loci, had 1.96 alleles and 1.22 effective alleles per locus, and observed and expected heterozygosities of 0.176 and 0.180, respectively. The level of genetic diversity was lower in the populations of the St. Lawrence lowlands than in those of western Quebec. This observation will help in guiding the selection program of the eastern white pine improvement program under way in Quebec. Genetic differentiation among sampled populations was weak and accounted for only 2% of the total diversity. The estimate of gene flow was very high, resulting in low values for genetic distances among populations. Only one locus showed a heterogeneity of allelic frequencies among populations after the Bonferroni procedure was applied for simultaneous statistical tests. A cluster analysis based on genetic distances among populations revealed that the Anticosti and Abitibi populations, located at the limit of the natural range of white pine, were similar to populations from regions that were geographically the most distant.


2005 ◽  
Vol 15 (4) ◽  
pp. 327-335 ◽  
Author(s):  
MANEE ARCHAWARANON

Hill Mynah Gracula religiosa is one of the most popular bird pets worldwide due to its ability to mimic diverse sounds, especially human speech. However, Mynahs have rarely been bred in captivity, so nestlings from natural populations are in large demand, resulting in many populations being threatened with extinction. Both subspecies in Thailand, intermedia and religiosa, are costly and desired in the pet market. Captive breeding is one of the most practical strategies to solve a conservation problem of this nature and this report describes a success in breeding Hill Mynahs in captivity. Mated pairs were given free access to food, nest-cavities and nest materials. Reproductive behaviour in captivity was not different from that in the wild, with the exception that breeding occurred throughout the year, even during the non-breeding season for wild populations. Although there are doubts concerning the reintroduction of captive-bred birds and whether successful Hill Mynah breeding in captivity is an economically competitive alternative to poaching, it ensures species survival in captivity as the risk of extinction increases.


Soil Research ◽  
2002 ◽  
Vol 40 (2) ◽  
pp. 351 ◽  
Author(s):  
P. L. Carey ◽  
V. J. Bidwell ◽  
R. G. McLaren

Copper, chromium, and arsenic (CCA) solutions are commonly used in New Zealand as a means of preserving softwood timbers such as Pinus radiata. With stock working solutions of CCA salts in timber treatment plants frequently 10% w/v or more, there exists a potential for spillage and leaching of these compounds to groundwater. High concentrations of Cr(VI) (up to 52 mg Cr/L) were found in the leachates of large undisturbed soil lysimeters where a Templeton sandy loam (Immature Pallic) had received surface applications of a simulated copper, chromium, and arsenic (CCA) timber preservative. Leaching was produced by using a combination of natural and imposed rainfall simulation over the lysimeters for a period of 102 days after CCA application. An average of 26% of the applied chromium was collected in the leachates after 102 days. Of the mean 74% of Cr(VI) still retained within the soil profile after leaching ended, almost half was located in the top 100 mm of the profile. No copper or arsenic was detected in any of the lysimeter leachates, with soil analysis indicating that these elements had been retained within the soil profile. In an incubation study, soil cores sampled from the same Templeton sandy loam and split into alternate 50-mm segments (to 450 mm) were stored at 10˚C for 102 days after addition of an identical CCA solution. These were periodically extracted for available chromium. Results showed that the reduction of dichromate/chromate anions (Cr2O72–/CrO42–) to the strongly sorbed chromic cation (Cr3+) was largely first-order and greatest in surface layers where soil organic matter contents were largest. After 102 days, <1% of the added Cr(VI) was still extractable in the 0–50 mm soil cores whilst ≈60% of Cr(VI) in the 400–450 mm cores (or deeper) was still extractable after the same period. A linear systems model comprising a series of conceptual mixing cells was used to describe the individual and mean Cr(VI) leaching breakthrough curves (BTCs). This State-Space Mixing Cell model proved effective in simulating the Cr(VI) leaching using first-order kinetics to quantify rate-limited local solute adsorption coupled to advective-dispersive transport. The solute mass involved in the model process was ≈30%. The bulk of the remaining 70% of applied dichromate was assumed to have undergone reduction to the non-mobile chromium cation. This study shows that there exists a significant potential for Cr(VI) to be a serious threat to groundwater in the event of a large uncontained spillage of a concentrated CCA solution. This potential can be significantly lessened if the Cr(VI) is reduced after retention in an organic matter rich layer.


Sign in / Sign up

Export Citation Format

Share Document