scholarly journals Expression of cholesterol packaging and transport genes in human and rat placenta: impact of obesity and a high-fat diet

2019 ◽  
Vol 11 (3) ◽  
pp. 222-227 ◽  
Author(s):  
Sally A. V. Draycott ◽  
Zoe Daniel ◽  
Raheela Khan ◽  
Beverly S. Muhlhausler ◽  
Matthew J. Elmes ◽  
...  

AbstractEvidence suggests that sub-optimal maternal nutrition has implications for the developing offspring. We have previously shown that exposure to a low-protein diet during gestation was associated with upregulation of genes associated with cholesterol transport and packaging within the placenta. This study aimed to elucidate the effect of altering maternal dietary linoleic acid (LA; omega-6) to alpha-linolenic acid (ALA; omega-6) ratios as well as total fat content on placental expression of genes associated with cholesterol transport. The potential for maternal body mass index (BMI) to be associated with expression of these genes in human placental samples was also evaluated. Placentas were collected from 24 Wistar rats at 20-day gestation (term = 21–22-day gestation) that had been fed one of four diets containing varying fatty acid compositions during pregnancy, and from 62 women at the time of delivery. Expression of 14 placental genes associated with cholesterol packaging and transfer was assessed in rodent and human samples by quantitative real time polymerase chain reaction. In rats, placental mRNA expression of ApoA2, ApoC2, Cubn, Fgg, Mttp and Ttr was significantly elevated (3–30 fold) in animals fed a high LA (36% fat) diet, suggesting increased cholesterol transport across the placenta in this group. In women, maternal BMI was associated with fewer inconsistent alterations in gene expression. In summary, sub-optimal maternal nutrition is associated with alterations in the expression of genes associated with cholesterol transport in a rat model. This may contribute to altered fetal development and potentially programme disease risk in later life. Further investigation of human placenta in response to specific dietary interventions is required.

2018 ◽  
Vol 9 (3) ◽  
pp. 253-259 ◽  
Author(s):  
M. Oyamada ◽  
A. Lim ◽  
R. Dixon ◽  
C. Wall ◽  
J. Bay

AbstractEvidence in support of the Developmental Origins of Health and Disease (DOHaD) hypothesis has reached the level where it can appropriately be used to inform practice. DOHaD informed interventions supporting primary noncommunicable disease risk reduction should target the pre- and periconceptional periods, pregnancy, lactation, childhood and adolescence. Such interventions are dependent on a health workforce (including dietitians, nurses, midwives, doctors, and nutrition teachers), that has a deep understanding of DOHaD concepts. This study assessed development of awareness of DOHaD concepts during undergraduate health professional training programs. Using a cross-sectional design, a standardized questionnaire was completed by Year 1–4 undergraduate students studying nutrition in Japan (n=309) and Year 1–3 nursing students in New Zealand (n=151). On entry to undergraduate study, most students had no awareness of the terms ‘DOHaD’ or ‘First 1000 Days’. While awareness reached 60% by Year 3 in courses that included DOHaD-related teaching, this remains inadequate. More than 95% of Year 1 undergraduates in both countries demonstrated an appreciation of associations between maternal nutrition and fetal health. However, awareness of associations between parental health status and/or nutritional environment and later-life health was low. While levels of awareness increased across program years, overall awareness was less than optimal. These results indicate evidence of some focus on DOHaD-related content in curricula. We argue that DOHaD principles should be one pillar around which health training curricula are built. This study indicates a need for the DOHaD community to engage with faculties in curriculum development.


Author(s):  
Lorian Taylor ◽  
Abdulelah Almutairdi ◽  
Nusrat Shommu ◽  
Richard Fedorak ◽  
Subrata Ghosh ◽  
...  

The purpose of this study was to (a) compare macro- and micronutrient intakes between male and female CD patients (b) compare micronutrient intakes of CD patients to a representative population of healthy individuals, and; (c) describe Mediterranean diet scores (P-MDS) of male and female CD patients in remission recruited from an IBD clinic in Calgary, AB. Consecutive patients with ileal and/or colonic CD in endoscopic remission were recruited for participation in this cross-sectional study. Sixty-seven patients were enrolled, with a mean age of 45, and a BMI ≥ 25. Compared with the healthy population, patients with CD had similar energy, protein, carbohydrate and total fat intake. However, PUFA, omega-6 and 3 and MUFA were lower in CD patients and dietary fibre intake was higher. Vitamins C, D, thiamin, niacin, magnesium, phosphorus, zinc and potassium were all significantly lower in all CD patients compared to a healthy population. Few patients with CD met P-MDS criteria for olive oil, vegetable, legumes, and fish intake or consuming Sofrito sauce (mean 4.5, SD=1.1 in males and 4.7, SD=1.8 in females). Patients with CD in remission have suboptimal dietary intakes and patterns and targeted dietary interventions may be beneficial in this population to improve intake.


2018 ◽  
Vol 76 (7) ◽  
pp. 497-511 ◽  
Author(s):  
Sarah E McKee ◽  
Teresa M Reyes

Abstract Pregnancy represents a critical period in fetal development, such that the prenatal environment can, in part, establish a lifelong trajectory of health or disease for the offspring. Poor nutrition (macro- or micronutrient deficiencies) can adversely affect brain development and significantly increase offspring risk for metabolic and neurological disease development. The concentration of dietary methyl-donor nutrients is known to alter DNA methylation in the brain, and alterations in DNA methylation can have long-lasting effects on gene expression and neuronal function. The decreased availability of methyl-donor nutrients to the developing fetus in models of poor maternal nutrition is one mechanism hypothesized to link maternal malnutrition and disease risk in offspring. Animal studies indicate that supplementation of both maternal and postnatal (early- and later-life) diets with methyl-donor nutrients can attenuate disease risk in offspring; however, clinical research is more equivocal. The objective of this review is to summarize how specific methyl-donor nutrient deficiencies and excesses during pre- and postnatal life alter neurodevelopment and cognition. Emphasis is placed on reviewing the current literature, highlighting challenges within nutrient supplementation research, and considering potential strategies to ensure robust findings in future studies.


Author(s):  
Er-Meng Gao ◽  
Bongkoch Turathum ◽  
Ling Wang ◽  
Di Zhang ◽  
Yu-Bing Liu ◽  
...  

AbstractThis study evaluated the differences in metabolites between cumulus cells (CCs) and mural granulosa cells (MGCs) from human preovulatory follicles to understand the mechanism of oocyte maturation involving CCs and MGCs. CCs and MGCs were collected from women who were undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) treatment. The differences in morphology were determined by immunofluorescence. The metabolomics of CCs and MGCs was measured by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) followed by quantitative polymerase chain reaction (qPCR) and western blot analysis to further confirm the genes and proteins involved in oocyte maturation. CCs and MGCs were cultured for 48 h in vitro, and the medium was collected for detection of hormone levels. There were minor morphological differences between CCs and MGCs. LC-MS/MS analysis showed that there were differences in 101 metabolites between CCs and MGCs: 7 metabolites were upregulated in CCs, and 94 metabolites were upregulated in MGCs. The metabolites related to cholesterol transport and estradiol production were enriched in CCs, while metabolites related to antiapoptosis were enriched in MGCs. The expression of genes and proteins involved in cholesterol transport (ABCA1, LDLR, and SCARB1) and estradiol production (SULT2B1 and CYP19A1) was significantly higher in CCs, and the expression of genes and proteins involved in antiapoptosis (CRLS1, LPCAT3, and PLA2G4A) was significantly higher in MGCs. The level of estrogen in CCs was significantly higher than that in MGCs, while the progesterone level showed no significant differences. There are differences between the metabolomes of CCs and MGCs. These differences may be involved in the regulation of oocyte maturation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Thorsten Braun ◽  
Vivien Filleböck ◽  
Boris Metze ◽  
Christoph Bührer ◽  
Andreas Plagemann ◽  
...  

AbstractObjectivesTo compare the long-term effects of antenatal betamethasone (ANS, ≤16 mg, =24 mg and >24 mg) in twins on infant and childhood growth.MethodsA retrospective cohort follow up study among 198 twins after ANS including three time points: U1 first neonatal examination after birth and in the neonatal period; U7 examination from the 21st to the 24th month of life and U9 examination from the 60th to the 64th month of life using data from copies of the children’s examination booklets. Inclusion criteria are twin pregnancies with preterm labor, cervical shortening, preterm premature rupture of membranes, or vaginal bleeding, and exposure to ANS between 23+5 and 33+6 weeks. Outcome measures are dosage-dependent and sex-specific effects of ANS on growth (body weight, body length, head circumference, body mass index and ponderal index) up to 5.3 years.ResultsOverall, 99 live-born twin pairs were included. Negative effects of ANS on fetal growth persisted beyond birth, altered infant and childhood growth, independent of possible confounding factors. Overall weight percentile significantly decreased between infancy and early childhood by 18.8%. Birth weight percentiles significantly changed in a dose dependent and sex specific manner, most obviously in female-female and mixed pairs. The ponderal index significantly decreased up to 42.9%, BMI index increased by up to 33.8%.ConclusionsANS results in long-term alterations in infant and childhood growth. Changes between infancy and early childhood in ponderal mass index and BMI, independent of dose or twin pair structure, might indicate an ANS associated increased risk for later life disease.SynopsisFirst-time report on long-term ANS administration growth effects in twin pregnancies, showing persisting alterations beyond birth in infant and childhood growth up to 5.3 years as potential indicator of later life disease risk.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S8-S9
Author(s):  
Julia Fritsch ◽  
Alejandra Quintero ◽  
Judith Pignac-Kobinger ◽  
Luis Garces ◽  
Ana Santander ◽  
...  

Abstract Background and Aims There is a lack of evidence-based dietary interventions in ulcerative colitis (UC) management. A diet high in fat and animal meat has been linked to an increased risk of UC. The aim of our study was to use a multilayered, multi-omic approach to comprehensively characterize the effect of a low fat, high fiber diet or a high fat diet in UC patients. Methods We enrolled patients with UC who were in remission or had mild disease with a flare within the last 18 months. We used a cross-over design in which patients received two dietary interventions: a low fat diet (LFD), containing 10% total calories from fat with an omega 6 to 3 ratio of below 3:1, and an idealized standard American diet (SAD), containing 35–40% total calories from fat with an omega 6 to 3 ratio of 20–30:1. Each diet was four weeks long with a two-week wash-out in between. The diet was catered and delivered to patients’ homes. Clinical symptoms, quality of life, and biochemical data were collected. Stool was collected for microbiome and metabolomic analyses. The primary endpoint was to determine adherence to a specified diet using catered meals; the secondary endpoint was to determine the clinical and subclinical effects of a low fat, high fiber diet or high fat diet in UC. Results Baseline diets varied widely but were generally lower in fiber as well as fruits and vegetables and higher in saturated fat than either of the study diets. There was a high rate of adherence to catered meals (SAD=86.68%, LFD=84.8%) with a 96.8% and 94.33% adherence to fat for SAD and LFD respectively. Patients that started in remission remained in remission (partial Mayo and sIBDQ). Following a LFD, patients saw a 20% improvement in their quality of life as measured by sIBDQ compared to their baseline. The effect of diet intervention on microbial diversity was reflected in the beta diversity with a significant increase in Faecalibacterium prausnitzii after LFD. CRP, sIBDQ, IL-6, and IL1β had a significant effect on overall gut microbiota composition as measured by Bray Curtis beta diversity (PERMANOVA)(P<0.007, P<0.001, P<0.021, P<0.048 respectively). The top taxa that contributes the most to this microbial variation from these clinical parameters was Faecalibacterium prausnitzii. Patients following a SAD had an increase in lauric acid, myristic acid, and N-oleoyl-L-phenylalanine with an increase in omega-6 metabolism pathways. Patients following a LFD had higher glycine, alanine, and phenyllactic acid with omega 3 metabolism pathways increased after LFD. Conclusions A low fat, high fiber diet is well tolerated and did not increase biochemical markers of inflammation. Catered meals and collection of microbiome, metabolome and biochemical data may allow early stratification of diet responders.


BMJ Open ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. e029554 ◽  
Author(s):  
Lee Hooper ◽  
Asmaa Abdelhamid ◽  
Julii Brainard ◽  
Katherine H O Deane ◽  
Fujian Song

ObjectiveTo create a database of long-term randomised controlled trials (RCTs) comparing higher with lower omega-3, omega-6 or total polyunsaturated fatty acid (PUFA), regardless of reported outcomes, and to develop methods to assess effects of increasing omega-6, alpha-linolenic acid (ALA), long-chain omega-3 (LCn3) and total PUFA on health outcomes.DesignSystematic review search, methodology and meta-analyses.Data sourcesMedline, Embase, CENTRAL, WHO International Clinical Trials Registry Platform, Clinicaltrials.gov and trials in relevant systematic reviews.Eligibility criteriaRCTs of ≥24 weeks' duration assessing effects of increasing ALA, LCn3, omega-6 or total PUFAs, regardless of outcomes reported.Data synthesisMethods included random-effects meta-analyses and sensitivity analyses. Funnel plots were examined, and subgrouping assessed effects of intervention type, replacement, baseline diabetes risk and use of diabetic medications, trial duration and dose. Quality of evidence was assessed using Grading of Recommendations Assessment, Development and Evaluation (GRADE).ResultsElectronic searches generated 37 810 hits, de-duplicated to 19 772 titles and abstracts. We assessed 2155 full-text papers, conference abstracts and trials registry entries independently in duplicate. Included studies were grouped into 363 RCTs comparing higher with lower omega-3, omega-6 and/or total PUFA intake of at least 6 months’ duration—the Database.Of these 363 included RCTs, 216 RCTs were included in at least one of our reviews of health outcomes, data extracted and risk of bias assessed in duplicate. Ninety five RCTs were included in the Database but not included in our current reviews. Of these 311 completed trials, 27 altered ALA intake, 221 altered LCn3 intake and 16 trials altered omega-3 intake without specifying whether ALA or LCn3. Forty one trials altered omega-6 and 59 total PUFA.The remaining 52 trials are ongoing though 13 (25%) appear to be outstanding, or constitute missing data.ConclusionsThis extensive database of trials is available to allow assessment of further health outcomes.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
C. Castro-Correia ◽  
S. Sousa ◽  
S. Norberto ◽  
C. Matos ◽  
V. F. Domingues ◽  
...  

Context. Several studies have shown a link between proinflammatory activity and the presence or deficit of some fatty acids. Inflammation is associated with several diseases including diabetes.Objective. To characterize and compare the fatty acids profiles in children with inaugural type 1 diabetes, diabetic children (at least 1 year after diagnosis), and healthy children.Design. Plasma fatty acids profiles in children with inaugural diabetes, children with noninaugural diabetes, and controls, all of whom were prepubescent with a BMI < 85th percentile, were evaluated.Results. Omega-3 fatty acid levels were higher in recently diagnosed subjects with diabetes than in controls. The ratio of omega-6/omega-3 fatty acids was higher in the control population. Omega-6 fatty acid levels were higher in the nonrecent diabetic subjects than in the children with recently diagnosed diabetes, and the levels were higher in the nonrecent diabetes group compared to the control group.Conclusion. Our findings showed higher levels of alpha-linolenic acid, EPA, and DHA, as well as mono- and polyunsaturated fatty acids, in diabetic children. These findings reinforce the importance of precocious nutritional attention and intervention in the treatment of diabetic children.


2016 ◽  
Vol 16 (4) ◽  
pp. 1045-1058 ◽  
Author(s):  
Essa Dirandeh ◽  
Armin Towhidi ◽  
Zarbakht Ansari ◽  
Saeeid Zeinoaldini ◽  
Mehdi Ganjkhanlou

Abstract The objective of this study was to investigate whether dietary supplementation with different polyunsaturated fatty acids (PUFA s) affects expression of genes related to somatotropic axis and the plasma concentrations of insulin, glucose, non-esterified fatty acids (NEFA), beta hydroxyl butyrate acids (BHBA) and insulin-like growth factor 1 (IGF1) and milk fatty acids profile. Right after calving, Holstein cows (n=45) were randomly assigned to one of three diets supplemented with roasted whole soybean as a source of omega-6 PUFA (omega-6, n=15), linseed as a source of omega-3 PUFA (omega-3, n=15) or palm oil (control, n=15). Each cow was in the study over a period of 70 days. Blood samples were collected every two weeks from day 1 to 70 of lactation and plasma concentrations of insulin, glucose, NEFA, BHBA and IGF1 were determined. Liver samples were taken from a subset of 18 cows (6 per diet) at day 70 postpartum and hepatic mRNA level of total growth hormone-receptor 1A (GHR1A), insulin receptor (INSR), IGF1 and insulinlike growth factor binding protein (IGFBP2) was assessed. Experimental diets did not affect milk yield. Plasma glucose and insulin concentrations were greater for omega-3 treatment compared to omega-6 and control treatments. Cows fed diets enriched in omega-3 exhibited greater INSR and GHR1A mRNA expression, and a tendency for greater IGF1 mRNA expression in the liver compared to omega-6 and control cows. Plasma IGF1 concentration was significantly higher in omega-3 treatment compared with omega-6 and control treatments. Results of this study suggest that feeding omega-3 PUFA s during early postpartum couples with the somatotropic axis, leading to an increase in plasma IGF1 concentration in dairy cows.


2005 ◽  
pp. 17-27
Author(s):  
Jane Harding ◽  
Frank Bloomfield ◽  
Mark Oliver

Sign in / Sign up

Export Citation Format

Share Document